

02Setting up the test
environment 33Multilingual Packages

14InstallExecuteSequence: No
Installation Wizard

41Avoid Reboots

42Public vs. Private Properties

43User Account Control
implications

15Installation Logs 39Offline installation

18Uninstall

35Updates deployment
scenarios

20Rollback

Advertised shortcuts vs
Active Setup 26 45Avoid Unnecesary Start-up

and Desktop Shortcuts

28Digital signing01Introduction

22Maintenance - Repair,
Modify/Change

Contents

11Powered by AdvancedInstaller.comPBPBPowered by AdvancedInstaller.com

Introduction
With over 20 years of combined software packaging experience,
Radu and Horatiu decided to write this guide to help software
developers master the key elements of application packaging.

Many developers still package their applications like we did in the
early 2000s. This is an enormous risk for your business, and an
opportunity for your competitors to win your clients.

Software access and distribution today is completely different than
the 2000s, when a company would mostly buy their software on a
CD or floppy disk from a local distributor. The internet reshaped that
landscape and today customers are much more demanding, more
knowledgeable, and informed of how easy it is for them to find a
solution from your competitors.

A good end-user experience is not purely based on the
functionalities of the software product you offer - the way you
deliver it plays a major role too. The installer is the first interaction
of your product with the end-user, not your application. This is why
having a robust installer for your software product is as important as
developing it.

Each software vendor must fully understand their customer’s needs
(whether we are talking about home users or enterprises) and
embrace the latest technologies and security requirements when
developing the software product and the installer.

This book is particularly aimed at developers and goes through the
most important key points that must be taken into account when
building an installer for Windows applications.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

22Powered by AdvancedInstaller.com

Test Environment Setup: Basic Functionalities
and using Virtual Machines for Testing
Setting up a Test Environment is the foundation of a successful app
installation, since it helps create a well grounded testing process.

A stable test environment is a key part in identifying potential errors
that need to be fixed.

One of the best ways to carry out accurate, fast, and repeatable tests
is by using Virtual Machines (VMs). The concept of testing using
VMs is the same regardless of the tool you use (Microsoft Hyper-V,
VMware, etc.) -- essentially, you’re creating a virtual environment
where you can install the operating system.

To create a Virtual Machine, you will use resources from the host
machine that are shared based on your configurations, just as you
would on a physical machine.

Simulating multiple devices with various
configurations

The first key feature of using VMs is that you can simulate multiple
devices with different configurations such as:

•	 varying disk space,

•	 RAM,

•	 and available CPU cores.

Configuring multiple devices is useful when testing your installer
in various scenarios, e.g. when hardware conditions are not met.

https://www.advancedinstaller.com/

33Powered by AdvancedInstaller.com22Powered by AdvancedInstaller.com

The results of your test will help you make informed decisions and
implement a proper user experience.

Example of virtual machine settings in Hyper-V

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

44Powered by AdvancedInstaller.com

Creating Snapshots to Revert to a Previous Version
of the OS

The snapshot or checkpoint functionality is another key feature of
a Virtual Machine (VM). It allows you to capture the state of the
operating system at any given time and to revert it to that original
version whenever you need to.

This option comes in handy in the following situations:

•	 When you intend to avoid the installer to corrupt the Operating
System (OS) and you don’t want to waste time by reinstalling it.

•	 When you want to check how the installer behaves with or
without other software installed on the machine.

•	 When you test your application multiple times and you don’t
want to corrupt the test results by having residual components
from a previous installation.

Hyper-V checkpoints example

Another advantage of generating a snapshot is that you can create
different Virtual Machines with different Operating Systems and
architectures. This is useful when you want to test your installer
application based on your specific configurations.

https://www.advancedinstaller.com/

55Powered by AdvancedInstaller.com44Powered by AdvancedInstaller.com

What are the steps you need to follow to create a test
environment?

1. Create a virtual machine by starting the “New virtual machines
wizard” - this works the same way in Hyper-V, VMWare, Virtual Box,
or any other virtualization software.

2. Configure the system resources during the creation process -- a
basic virtual machine for application testing would have at least 2
CPUs, 4 GB of RAM, and 80 GB of hard disk space.

3. Enable the Virtual Network Adapter (for internet or intranet).

4. Have a Windows Disk Image ready (ISO). You will be prompted
to select the location from where to install the Operating System.

5. Install the Operating System.

6. Login to the test machine and perform the initial standard
OS configuration: Time Preferences, Zone, Location, Windows
Experience, etc.

7. Shut down the machine.

8. Create a Checkpoint/Snapshot.

Once you have created the virtual machine and have an initial
Checkpoint/Snapshot, you can start testing the installation. After
each test, it’s best to revert to the machine’s initial state (to the
checkpoint/snapshot you created in Step 8).ProTips

You can use PowerShell Direct to initiate a session with your Hyper-V
Virtual machine from your host machine. Open Powershell and use
the following commands:

To initiate the session:

//code snip

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

66Powered by AdvancedInstaller.com

Enter-PSSession -VMName <VMName>

To end the session:

//code snip

Enter-PSSession -VMName <VMName>

Advanced Installer offers direct support for integrating VMs. You can
trigger the installation directly from your host machine in one click.
Learn more about Testing installations in Virtual Machines.

hook

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/virtual-machines-testing.html

77Powered by AdvancedInstaller.com66Powered by AdvancedInstaller.com

Installation context and silent deployments

When it comes to the installation context of an application, there are
two options:

1. Install in user context (“per-user” installation): Which means
the setup is executed by the current logged-in user and the
application is installed and available for that particular user’s
profile.

2. Install in system context (“per-machine” installation): Which
means the setup is executed by the “system” with system
privileges, and the application is available for all users on that
machine.

Install in “user context” (“per-user” installation)

The “user context” or “per-user” installation is used most commonly
by a regular user with no admin privileges. To test how the
application installation behaves under the “user context”, check the
following scenarios:

1. Log in to the test machine with your user account (non-
administrator), double-click to launch the installer, and go through
the installation wizard.

2. Log in to the test machine with your administrator user account,
double-click to execute the installer, and go through the installation
wizard.

It is exactly the same task but with different types of users. This
is because administrator users have different privileges from
regular users and have access to advanced resources and different
locations of the Operating System (OS).

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/
https://docs.microsoft.com/en-us/windows/win32/msi/installation-context

88Powered by AdvancedInstaller.com

If your application requires this kind of administrative access, the
installation will fail when a basic user without admin privileges tries
to execute the setup. Don’t worry, this is normal behavior. In this
case, for the application to install successfully, you need to run the
installer as an administrator user.

Install in “sywstem context” (“per-machine” installation)

The “system context” installation is used in enterprise environments
when the setup is not executed by the users (even if they have admin
privileges). It is triggered by configuration management tools after
the application is deployed to the targeted machine.

Some examples of configuration management tools include:
Microsoft’s former SCCM (now called MECM), Intune EDM, Ivanti
Landesk, Matrix42 Empirium.

To replicate and test a system context installation, you need to use
PsExec, a command-line utility tool that allows you to execute
various commands using different contexts.

To do that:

1. Download PsTools from the Sysinternals.

2. Unzip the content to a known location -- PsTools includes the
PsExec tool that you will use.

You can see how it will look on your screen in the image below.

https://www.advancedinstaller.com/
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec
https://download.sysinternals.com/files/PSTools.zip

99Powered by AdvancedInstaller.com88Powered by AdvancedInstaller.com

HOOK

Then, continue with the follow these steps:

3. Open a command prompt with administrative privileges,

4. Navigate to the folder containing the psexec,

5. Type the following command: Psexec.exe /i /s cmd

6. Click Agree.

After you click on the “Agree” button, it will open a new cmd window
interface from which you can run install commands using the
system context. It works just as if the command was executed by a
configuration management tool after the application was deployed.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

1010Powered by AdvancedInstaller.com

HOOK

To deploy an application in an enterprise environment, first, it has to
be integrated into a configuration management tool.

As soon as the package is integrated, the config management tool
calls the installer with the set parameters. These parameters are
used to automatically install the application without the need of any
user interaction -- making this the silent part of the deployment.

To make your life easier during your installation, you want your
application to support being silently deployed.

You can review MSI’s silent install standard parameters right below:

https://www.advancedinstaller.com/

1111Powered by AdvancedInstaller.com1010Powered by AdvancedInstaller.com

•	 /quiet - quiet mode (there is no user interaction)

•	 /passive - unattended mode (the installation shows only a
progress bar)

•	 /q - set the UI level:

•	 n - no UI

•	 n+ - no UI except for a modal dialog box displayed at the end.

•	 b - basic UI

•	 b+ - basic UI with a modal dialog box displayed at the
end. The modal box is not displayed if the user cancels the
installation. Use qb+! or qb!+ to hide the [Cancel] button.

•	 b- - basic UI with no modal dialog boxes. Please note that /
qb+- is not a supported UI level. Use qb-! or qb!- to hide the [
Cancel] button.

•	 r - reduced UI

•	 f - full UI

To replicate the silent deployment of Configuration Management
tools, we suggest testing at least the two most common silent
modes: /qn and /qb!

 To do that, go to the system context cmd window and test the
command lines (listed below) separately. After each command line
is executed, the application must be uninstalled before you try the
other silent install command.

Msiexec /i <applicationname.msi> /qn /l*v install.
log

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

1212Powered by AdvancedInstaller.com

Msiexec /i <applicationname.msi> /qb! /l*v
install.log

The /qn parameter replicates a fully silent installation mode provided
by the configuration management tools. If an error occurs in the
background or a pop-up appears while triggering the installer
without any user interaction and GUI, the installation will get stuck in
the background. This is due to the fact that all the install interfaces
and windows are hidden.

On the other hand, the /qb! parameter offers the same automation
needed for silent deployment (no user interaction during the setup)
but showing a progress bar of the installer.

In case an error occurs or a pop-up appears, it will be visible
because the interface is not fully hidden. This is great when
performing silent install testing because it lets you know what is
wrong and what needs to be reconfigured in the installer.

https://www.advancedinstaller.com/

1313Powered by AdvancedInstaller.com1212Powered by AdvancedInstaller.com

.
Pro Tips

In some cases, application installers have two or more selectable
features. Usually, you want the application to install all the
features by default when triggered silently. After the installation
is done, you must check if all the components are present on the
machine.

Windows Installer offers the capability to perform a per-user
or per-machine installation by setting the property value to
“ALLUSERS”. If you set your application in Configuration Manager
to “Install for system”, but the application itself is not configured
for a “per-machine” installation, then you might run into
problems.

As an example, when set to “Install for system”, the installation
is executed under system context and if the application has a
shortcut in StartMenu, that shortcut will end up in the System
Start Menu, making it not visible to the user.

Remember, a good application is one that installs and can be
distributed silently without any problems. It’s not all about its
design and dialog functionality!

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

1414Powered by AdvancedInstaller.com

InstallExecuteSequence: No Installation
Wizard
While individual users are used to installing and configuring their
applications using the installation wizard, things work differently
for business users. Within the enterprise environment, applications,
along with their customizations, are deployed silently without any
user interaction.

Other than the fact that a standard business user does not have
enough permissions to perform a per-machine installation, most
of them do not have the technical knowledge to configure and
customize applications -- they don’t need it for their role.

From a business user perspective, all they must know is how to use
these applications to complete their job tasks.

This is why silent installations are important for these users and
dialogs are not recommended.

To achieve a silent installation of the application with
MSI, it is mandatory for the Custom Actions scheduled in
“InstallExecuteSequence” not to display any dialog boxes or any
messages that block the installation process and require user
interaction.

The same goes for uninstallations and upgrades. This is because,
during a silent installation, uninstallation, or upgrade only the
Custom Actions scheduled in “InstallExecuteSequence” are
executed.

https://www.advancedinstaller.com/

1515Powered by AdvancedInstaller.com1414Powered by AdvancedInstaller.com

Installation Logs
It is quitepretty difficult, if not impossible, to achieve a 100%
installation success rate,. This is particularly true eespecially if the
application is targeted to hundreds or even thousands of devices,
located in different areas of the business and with slightly different
configurations.

When an installation fails, the first place to look before
troubleshooting must be the log file created during the installation.
The information in the log file should provide enough details to the
person who reads it to identify the root cause of the issue and solve
it.

Windows Installer offers logging support to help out in
troubleshooting issues with MSI installers. To log the execution of
a specific MSI installer, you need to use /L parameter along with the
needed flags which indicate which information to log.

The syntax for the logging command is:

msiexec.exe [/i][/x] <path_to_package> [/L{i|w|e|a
|r|u|c|m|o|p|v|x+|!|*}] <path_to_log>

The most commonly used logging parameter is /L*v which records
all the logging information, including verbose output.

msiexec.exe /i “C:\MyPackage.msi” /L*V “C:\
MyPackageLog.log”

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/
http://

1616Powered by AdvancedInstaller.com

For more information on how to create an installation log for
your installer and learn more about other parameters you can
use, check out our User Guide - How to Create an Installation
Log.

Alternatively, you can enable Windows Installer logging for all MSI
installers. This will record all the information into a .log file located in
the Temp folder.

Be cautious when you do this as it could cause serious problems
if applied incorrectly. Also, it is not recommended for Windows
Installer logging to be permanently enabled on production
devices as it could cause performance and disk space issues.

Additionally, through the use of Custom Actions, Windows Installer
offers the possibility to amend the installer log file and write a
specific event into it.

Read more about how to write a specific event in the log file here:
How to write a specific event in the log.

The MSI log files are massive and if you are not familiar with them,
you might feel lost.

If the return code is 0 (zero), that means the action (install/uninstall)
has been completed successfully. A 3010 return code indicates that
the action has been completed successfully, but a reboot is required.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/user-guide/qa-log.html
https://www.advancedinstaller.com/user-guide/qa-log.html
https://docs.microsoft.com/en-us/troubleshoot/windows-client/application-management/enable-windows-installer-logging
https://www.advancedinstaller.com/user-guide/qa-log-custom-action.html

1717Powered by AdvancedInstaller.com1616Powered by AdvancedInstaller.com

T

Review the Microsoft documentation for a full comprehensive
list of MSI return codes.

he most common return code in case of a failure is 1603 which
indicates a fatal error occurred during the installation. A good
practice would be to search for “value 3” in the log file and start
reading up from there.

Pro Tips

You can use the CmTrace.exe to easily read the logs. The
sections that contain the word “error” are highlighted and are
easily spotted. Even if it’s old, it’s still reliable. You can get it from
the Microsoft System Center 2012 toolkit.

In our User Guide, you can find more details about how to debug
a verbose log file created by Windows Installer.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/
https://docs.microsoft.com/en-us/windows/win32/msi/error-codes

1818Powered by AdvancedInstaller.com

Uninstall
The installation process of an application is not the only aspect to
keep track of when testing your application. It is equally important to
make sure that the uninstallation works as expected.

Test the uninstallation on all the operating systems supported by
your application.

Ideally, the uninstallation must run without any errors and
successfully remove all of the resources added during the
installation.

We are talking files, registries, shortcuts, windows services,
environment variables, fonts or any other OS resources of the
applications. All of these elements must be removed during

If you don’t deliver your application to your customers in MSI
format, then make sure that:

•	 your application installer supports logging

•	 it records enough information in the log file to help with
troubleshooting in case of a failure

•	 you have documented the return codes.

https://www.advancedinstaller.com/

1919Powered by AdvancedInstaller.com1818Powered by AdvancedInstaller.com

the uninstallation process. In simple words, the OS state after
an uninstallation must be the same as the OS state before the
installation of the application.With MSI, it is difficult to achieve a
clean uninstall and it’s common for MSI applications to leave a trace
in the system.

In MSI, you will see that all the files and registry entries created by
the application at runtime are left on the machine. Moreover, all of
the application files from the user profile (AppData, LocalAppData,
Roaming) and the registry key from the Current User hive are also
left behind. This clutter stays on the host machine, making it slower
with the installation of every new application.

Luckily, App-V and MSIX have changed that . These new
technologies simplify the uninstallation of applications and you do
not need to worry so much about OS resources remaining in the
system after uninstalling it.

Thanks to their containerized model, all the OS resources related
to the application either stay within the container or follow precise,
predictable rules about where they may live. Therefore, when you
uninstall the application, all the specific OS resources go with it –
leaving no clutter behind.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

2020Powered by AdvancedInstaller.com

Rollback
The rollback action will always occur when the installation process
is canceled or an error appears. The rollback should ensure that if
the application installation is interrupted, all the actions that have
been completed up to that point get reversed and that no garbage is
left behind.

When an installation rollback occurs, Rollback Custom Actions are
executed. They reverse the changes made by any Deferred Custom
Actions during the installation and roll the system back to its original
state.

Only Deferred Custom Actions can have a corresponding
Rollback CustomAction to undo the changes during the
installation rollback.

Let’s set a scenario: During installation, all the files were copied and
all the registry keys were applied -- but the installation gets canceled
by the user or an error occurs. If the rollback works correctly, all the
files that have been copied and registry keys that were applied, get
deleted automatically and are no longer present on the machine
after the installation error occurs.

To test the rollback functionality, follow these steps:

1. Trigger the installer setup file.

2. Go through the installation wizard.

3. Note the install folder (ex: C:\Program Files\My Application).

https://www.advancedinstaller.com/

2121Powered by AdvancedInstaller.com2020Powered by AdvancedInstaller.com

4. Click the cancel button while the installation progress bar is still
displayed.

As a result, depending on how the GUI of the application was
designed, it should display “Rolling back action ” under or above the
progress bar. The progress bar should go backwards, undoing what
the installer had done up to that point.

The time it takes the rollback action to finish varies depending on
various factors ranging from the size of the application to the
amount of files that were copied, as well as the actions that were
performed before the installation got canceled.

After the rollback is finished, you should check that there’s no
“My Application” folder in C:\Program Files by navigating to the
installation folder.

Pro tip

You can track the rollback action in the log file if you trigger
the installation via the command line and the log parameter is
passed. Here is an example extracted from the install log file that
provides information about the rollback action.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

2222Powered by AdvancedInstaller.com

Maintenance - Repair, Modify/Change
Maintenance represents a key feature of an MSI installer that is
usually neglected because it is used after the application is installed.

When it comes to the Repair function:

1. You must first install the application on the test machine.

2. Then, delete a file, a registry key, or anything belonging to the
application.

3. Finally, use the repair button from the Control Panel.

4. After that, the missing file should be restored.

https://www.advancedinstaller.com/

2323Powered by AdvancedInstaller.com2222Powered by AdvancedInstaller.com

Alternatively, you can launch the repair command from a command
prompt:

Msiexec /fomus <MSIPRODUCTCODE>

F - stands for the standarwd repair argument

O - reinstall if a file is missing or an older version is installed

M - rewrites all required application computer-specific registry keys

U - rewrites all required application user-specific registry keys

S - overwrites all specific shortcuts

The Modify/Change function usually applies to applications that
offer multiple features during the installation.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

2424Powered by AdvancedInstaller.com

To test it, you should initially install one feature from the available
ones in the application.

Following up, trigger the Change/Modify from Apps and features
and add the additional feature you want from the installation setup
wizard.

https://www.advancedinstaller.com/

2525Powered by AdvancedInstaller.com2424Powered by AdvancedInstaller.com

.

.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

2626Powered by AdvancedInstaller.com

Advertised shortcuts vs Active Setup
Advertised shortcuts and Active Setup are mostly used in enterprise
environments where applications are distributed using Configuration
Management tools in a system context installation (see the
Installation Context chapter). The role of advertised shortcuts and
active setup is to install user information, files, registry settings, etc.

How do Advertised Shortcuts work?

After the application is installed in the system context, launch the
advertised application shortcut for the first time. After that, it should
trigger a “repair” action of the application that will apply all the user
settings as mentioned above.

These actions will occur for the logged-in user that launched the
application shortcut.

We recommend you follow these guidelines when you test the
advertised shortcuts:

1. Install the application in system context with the PsExec tool
(see the installation context chapter from this book).

2. Double click the application shortcut.

3. Repair should be automatically triggered.

How does the Active Setup work?

The Active Setup uses the same principle of triggering the repair but
in a slightly different way. The Active Setup is set by initially adding
the “StubPath” reg key -- which has the value equal to the msiexec
repair command.

https://www.advancedinstaller.com/

2727Powered by AdvancedInstaller.com2626Powered by AdvancedInstaller.com

Example :

msiexec /f {ProductCode} /qb!

The key is located in the registry hive below:

“HKLM\Software\Microsoft\Active Setup\Installed
Components\[PRODUCTCODE]”

Then, it compares it to the corresponding key for the below hive:

“HKCU\Software\Microsoft\Active Setup\Installed
Components\[PRODUCTCODE]”

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

2828Powered by AdvancedInstaller.com

Did you notice the difference?

It’s the hive parent: One is Local Machine while the other is Current
User (HLKM vs HKCU). If the HKCU key is not present on the
currently logged-in user hive, it will trigger the active setup at the first
login.

How to test the Active Setup?

1. Install the application in a system context with the PsExec tool
(see the installation context chapter from this book).

2. Log out from the test machine.

3. Log in to test the machine.

4. The Active setup should be triggered automatically and based
on the display level from the example.

For each user, the active setup should be triggered at the first login
after the application is installed, and the application user settings,
files, etc. should be applied.

Also, the above HKCU should be present there. On the next login, an
active setup will not be triggered unless there is a new user.

Digital signing
Digital signing is mandatory for MSIX applications. Although it is still
optional for MSI applications, it is highly recommended.

A digitally signed package guarantees to the end-user that the
application built by the vendor was not corrupted by a man-in-the-
middle attack. Today, man-in-the-middle attacks are one of the most

https://www.advancedinstaller.com/

2929Powered by AdvancedInstaller.com2828Powered by AdvancedInstaller.com

common ways for hackers to install malicious ransomware.

When you install an application without a digital signature, Windows
automatically detects this and shows a pop-up asking if you want to
allow an app from an “unknown publisher” to make changes to your
device.

The first step to take is to check if the MSI installer is digitally
signed. This can be easily done by right-clicking on it and selecting
“Properties”. Then, go to the “Digital Signature” tab.

This tab will show the information of the signature certified authority
that issued the certificate.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

3030Powered by AdvancedInstaller.com

If the digital signature tab is missing, then the application installer
was not digitally signed.

There are two methods to obtain a certificate that can be used to
digitally sign a package:

1. Buying a code certificate from a certified authority

2. Generating an in-house certificate

When you buy a certificate from a certified authority, you can get a
standard code signing certificate or an EV code signing certificate.

EV code signing certificates are relatively new, being used for just a
few years. These certificates ensure a higher degree of verifications
and promise an instant trustable reputation with the Microsoft
SmartScreen filter.

As a software vendor, you should always use a code signing
certificate to digitally sign your package. As mentioned above, this
helps the OS separate malicious from authentic software and reduce
the amount of false-positive detections with antivirus vendors.

When it comes to in-house self-signed certificates, there are two
main use cases:

1. When used by development teams to temporarily sign daily

https://www.advancedinstaller.com/

3131Powered by AdvancedInstaller.com3030Powered by AdvancedInstaller.com

builds of an MSIX package so it can be tested by the QA team.

2. When deployed in private enterprise environments where some
organizations can use a self-signed certificate to better control
corporate policies, including which software can be installed or
launched by an end-user.

A self-signed certificate must be present (previously installed) on
the test machine, otherwise, the OS will not recognize the package’s
digital signature.

To check if the certificate is installed:

1. Open the Windows Start menu

2. Type certlm.msc

3. Then Run as administrator.

4. The certificate should appear under “Local Computer” /
“Trusted Root Certified Authorities”.

If the certificate is not there, you should install the certificate on the
machine by double-clicking on it and following the wizard.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

3232Powered by AdvancedInstaller.com

After the certificate is applied, in the case of an MSI installation, this
pop-upshould not appear anymore.

.

https://www.advancedinstaller.com/

3333Powered by AdvancedInstaller.com3232Powered by AdvancedInstaller.com

This means the digital signature from the application installer is
recognized by the system. For an MSIX installation, you should then
be able to install the MSIX package (before this, the system would
have blocked the installation).

Learn more about digital signature and its importance from our	
MSIX Digital Signing and Timestamping blog posts.

Multilingual Packages
Other than the default English interface, an application can have a
multi-language user interface or a language-specific interface based
on what the user selects.

It is important not to neglect this particular aspect during the testing
phase.

To test multilingual interfaces, install the application on OSs using
different languages and check if the results are as expected.

For example: If the installer supports German and you install it on a
machine where Windows is also in German, the interaction dialogs
should be in the same language. Also, the default language should
be in the German language if, by design, the software allows you to
select the language.

Testing your application on a different language OS can also
indicate if you have any hard-coded data (but this is not a common
scenario).

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/
https://www.advancedinstaller.com/msix-digital-signing.html
https://www.advancedinstaller.com/digital-signature-timestamp.html

3434Powered by AdvancedInstaller.com

Imagine your application adds some files in “C:\Program
Files (x86)\YourApplication”. If you are on the German
language OS, then “C:\Program Files (x86)” is called “C:\
Programme(x86)”.

So, if you haven’t defined this path as an environment variable
(%ProgramFiles(x86)%) , it will not be recognized.

Now, when it comes to Unicode, ANSI, or any other database
encoding, the principle is the same but with a focus point on
character interpretation.

Below is an example of an application in the Russian language on a
Windows 10 English machine.

Because of the different encoding, the characters are interpreted
and displayed incorrectly.

https://www.advancedinstaller.com/

3535Powered by AdvancedInstaller.com3434Powered by AdvancedInstaller.com

You must test the UI alignment and spacing when you use a different
language.

Keep in mind that the encoding will be different for some languages
that have special characters (ie. Russian, Arabic, and Greek). Also,
the length of text will vary depending on each language and the
installer interface might look jumbled.

Updates deployment scenarios
Most of the time, especially in an enterprise environment, you will
have previous versions of the application already installed on the
machine. Therefore, you must test the application behavior when
installing it on a system where the previous version is already
present.

First, consider if the newly deployed application is a patch or a new,
updated version standalone application.

Patches only change the version and upgrade some files, registry
keys, or minor settings of the base application that get updated
compared to a standalone update application. You can read more on
our Major Upgrade vs Patch article.

Patch application

The first patch test is to log in to the test environment and without
having the base application installed previously, execute the patch
install.

This should give you an error message. It’s expected behavior since
this is what patches do: they patch an application.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/
https://www.advancedinstaller.com/major-upgrade-vs-patch.html

3636Powered by AdvancedInstaller.com

So, you need the base version.

The second patch test is to install the base application first, and then
execute the patch.

This should open the setup wizard so you can proceed with the
installation. In the end, after the patch is installed, you should notice
an increase in the application version when looking in the Add/
Remove Programs.

If you have the previous version installed, and you get the same error
from the previous screenshot, then there is a misconfiguration in the
upgrade table of the package.

Use the free Orca MSI editor and open both the patch and the base
MSI application.

Check the View / Summary Information tab.

https://www.advancedinstaller.com/
http://Use the free Orca MSI editor and open both the patch and the base MSI application.

Check the View / Summary Information tab.

The product code from the patch Targets should match the product code from the base application.

3737Powered by AdvancedInstaller.com3636Powered by AdvancedInstaller.com

The product code from the patch Targets should match the product
code from the base application.

For easier troubleshooting when you test a patch, it is best that you
execute the installation using the command line and include the
logging parameter as explained in the Logging chapter.

A standard patch installation command should look like this:

Msiexec /p <mypatchapplication.msp> /l*v patchinstall.log

You can also include the /qb! or /qn parameter to test the silent
deployment (as discussed in the Installation Context and Silent
Deployment chapter)

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

3838Powered by AdvancedInstaller.com

Standalone upgrade application

In standalone applications that also upgrade the previous version
to a new one, the expected behavior when testing should be to
automatically remove the previous version and then install the new
version. You can check the Add/Remove programs entry and it
should only display the latest version installed.

Keep in mind that there are situations where different versions of
applications can coexist at the same time.

In Advanced Installer, when a new version is released, it offers the
users two options when upgrading:

1. Install the new version while the old one is removed.

2. Keep the old version but also install the latest one: side-by-side
installation.

.

https://www.advancedinstaller.com/

3939Powered by AdvancedInstaller.com3838Powered by AdvancedInstaller.com

Offline installation
There are multiple reasons why enterprises set specific policies
to restrict internet access for their users - the main one being the
security vulnerabilities that come with uncontrolled internet use.

Restricting internet access prevents application installers from
downloading resources that may be needed during the installation.

This is why, if used within an enterprise, the installer should have
all the resources needed during the installation within it so that an
internet connection is not required during the installation.

Of course, enterprises could unblock certain URLs if needed, but
still, an application that downloads its resources from the internet
during the installation is not the best option. Why? Just imagine the
traffic generated when the application is targeted to hundreds or
thousands of devices all at once.

Testing offline installations is very straightforward. Make sure
that the test environment is disconnected from the internet and
then launch the installer. Run through the installation wizard while
performing a silent installation.

If you receive an error suggesting that some required files
or resources are not accessible, this means you have a
misconfiguration in your installer and it still requires internet access.

Some vendors come with both offline and online installers for their
applications. This way, individual customers or enterprises can
choose which one suits them best.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

4040Powered by AdvancedInstaller.com

Visual Studio is one of them and below you can see a screenshot
of the error you get when you try to use the online installer without
having access to the corresponding URL (because you don’t have
access to an internet connection).

There’s a bit of a drawback when it comes to these types of
installers: size limitations.

Installers that are too large, and include lots of expanded files, are
prone to fail when deployed to end-users.

It is a best practice to keep the size of the installer as low as
possible by removing the wasted storage space in the MSI and
compressing all the files needed for the installation. You can store
them in the cabinet files (streamed inside the MSI installer or stored
outside as a separate file) instead.

https://www.advancedinstaller.com/
https://docs.microsoft.com/en-us/windows/win32/msi/cabinet

4141Powered by AdvancedInstaller.com4040Powered by AdvancedInstaller.com

Avoid Reboots
Some applications require a reboot after the installation,
uninstallation or upgrade of the software.

Anchor

A reboot of the device is needed when you can’t replace a file
because it is being used by the operating system or by other
applications.

Within an enterprise, business disruptions should be minimal and
avoided whenever possible. The installation, uninstallation, or
upgrade of the applications within the enterprise infrastructure are

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

4242Powered by AdvancedInstaller.com

all done silently in the background, without interrupting or prompting
action from the end-user.

A force reboot of the device is out of the question – you do not
want to risk forcing a reboot when some of your business users are
working on critical tasks.

This is why enterprises prefer to suppress any force reboot needed
by their application installers and manage that externally (e.g. via
SCCM/MEMCM). The most common ways to suppress a reboot are
via the REBOOT and MSIRESTARTMANAGERCONTROL properties.

msiexec.exe /i “C:\MyPackage.msi” /L*V “C:\
MyPackageLog.log” REBOOT=ReallySuppress
MSIRESTARMANABERCONTROL=Disable

The installer may still require a reboot. You can check that out by
having a look in the installer log.

A 3010 return code indicates that the action has been completed
successfully, however, a reboot is required.

Public vs. Private Properties
Properties are global variables that can be used by Windows
Installer to configure the software installation. Their values can be
defined either within the installation package or by the end-user (via
User Interface).

There are two categories of properties:

1. Private properties (My_Prop)

2. Public properties. (MY_PROP)

https://www.advancedinstaller.com/
https://docs.microsoft.com/en-us/windows/win32/msi/reboot
https://docs.microsoft.com/en-us/windows/win32/msi/msirestartmanagercontrol

4343Powered by AdvancedInstaller.com4242Powered by AdvancedInstaller.com

The value of private properties must be either authored into the
Windows Installer database or set by the installer itself to values
determined by the operating environment. Users cannot interact with
them other than through Control Events.

And its value can be changed from a command line like this:

msiexec /i <path to the msi> REBOOT=ReallySuppress

To easily distinguish one from the other, the name of public
properties must not contain lowercase letters.

User Account Control implications
The User Account Control (UAC) is a windows security layer that
helps to prevent malware.

Most applications require administrative privileges in order to be
installed because the installer copies files on system locations and
access resources on the OS that are located under secure locations.
Many of these actions are performed with the help of custom
actions inside the package.

Therefore, an MSI application should be properly configured when
it comes to custom actions. All custom actions that require admin
privileges must be set up as “deferred” instead of “immediate”.
Otherwise, it will not run properly and errors will occur.

When testing the application UAC, consider the following:

1. Check whether the UAC is disabled or enabled on the test
machine.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

4444Powered by AdvancedInstaller.com

2. If you trigger the installer under system context (mentioned in
the installation context chapter) you shouldn’t get any UAC pop-up
if UAC is enabled.

3. If you start the installer from a cmd with elevated privileges (as
an administrator), no UAC pop-up should appear if UAC is enabled.

4. If you start the installer and you are an administrator, no UAC
pop-up should appear if UAC is enabled.

5. If you start the installer as a standard user, and the UAC is
enabled, then you should get a UAC pop-up.

UAC information could also be embedded into the program
manifest. If UAC is enabled, the execution level of the program is set
to “require administrator” (level=’requireAdministrator’), then UAC
will kick in and the system will prompt for admin credentials.

.

https://www.advancedinstaller.com/

4545Powered by AdvancedInstaller.com4444Powered by AdvancedInstaller.com

Avoid Unnecessary Start-up and Desktop
Shortcuts
The application shortcut is the most common and easiest way for
the end-user to launch a program.

Each application can have one or more shortcuts that can be placed
in any folder (StartMenu, Programs, Taskbar, Desktop, or any other
location on the computer).

Even though having a shortcut on the Desktop eliminates the need
for the end-user to go to the Start Menu Programs list and launch the
application from there, enterprises tend to not favor Desktop
shortcuts.

They have a good reason to do so. Multiple applications are
needed by each of the end-users to do their work. If each of those
applications installs a Desktop shortcut, it could easily become
cluttered.

Moreover, in contrast with home users who have full permission on
their devices, a standard business user within an enterprise does
not have enough permission to remove any Desktop shortcuts when

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

4646Powered by AdvancedInstaller.com

installed under the Public Folder.These are some aspects that must
be taken into account when you build your application installer.

Having a Desktop shortcut included in your application installer
is not necessarily a bad idea since it offers easy access to your
applications, but having a desktop shortcut should be something
that can be easily customized during the installation of your
software.

The same goes for the shortcuts placed in the Start-up folder. It is
not ideal to have too many programs running once Windows loads
as it causes slow bootup.

In Windows 10, the Start-up folder is hidden and to access it you
need to browse the corresponding location via Windows Explorer
(C:\ProgramData\Microsoft\Windows\Start Menu\
Programs\StartUp or C:\Users\<user>\AppData\Roaming\
Microsoft\Windows\Start Menu\Programs\Startup) or by
opening a Run command window (Win+R) and then typing:

shell:common startup - for “All Users” Start-up folder

shell:startup - for the current user Start-up folder.

https://www.advancedinstaller.com/

4747Powered by AdvancedInstaller.com4646Powered by AdvancedInstaller.com

Conclusion
While an individual user does not bother too much if your software
installers copies a Desktop or Start-up shortcut or if it asks for a
reboot after install, within an enterprise environment these kind of
things must be avoided as much as possible. Same goes for online
installers – enterprise organizations do not like them.

Every single enterprise organization in the world uses tools like
Microsoft Endpoint Manager (Configuration Manager or Intune) to
deploy the applications to the target devices/users and in most of
the scenarios that must be a silent deployment – meaning that your
software installer must offer support for silent switches.

It is also preferable for the software installers to be easily
configurable and that’s why parametrization and the usage of public
properties must be taken into account when you build the software
installer. Logging switches come also handy within an enterprise
environment when debugging is needed.

Smooth upgrade from a version to another and also the uninstall
of your software product are two other scenarios which you must
consider and must be thoroughly tested before you deliver it to your
customers.

Cybersecurity has become increasingly important nowadays. If
User Account Control is an absolute must within an enterprise
organization, many of them have also adhered to more modern
security solutions such as digital signing. As a respectable ISV, you
may want to take this into consideration too when you build your
software installer.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

