
17 Best Practice
Recommendations to

Package Your
Application for
Enterprise Use.

From the installer type to
documentation guidelines,
everything you need to
consider when building your
installer package to ensure
flawless performance within
enterprise environments.

T
A

B
L

E
 O

F
 C

O
N

T
E

N
T

S Application Packaging for independent
developers and ISVs

The essentials for building your installer
1. MSI or EXE?
2. Support the command line switches for silent installation (and

configuration).
3. Create an upgrade package to update to the new version
4. Make your installer 100% offline.

For enterprise deployment
5. Try not to bundle multiple packages/MSIs into a single one.
6. Provide a command-line switch to disable automatic updates
7. Include building rollback custom actions.
8. Never modify system resources from immediate custom actions--only

deferred ones.
9. Avoid triggering restarts during the installation.
10. Store your application data in the Roaming AppData folder.

Testing
11. Check the package for UI blocking custom actions on the InstallExecute

sequence.
12. Test your package installation under the SYSTEM account, using PsExec

tools.
13. Test your package in VMs (virtual machines), on multiple systems, to

cover all your users.

Documentation
14. Document the command line switches/options in a dedicated download

page (or PDF) for the IT pros.
15. Document all GUI user inputs (if any) as command line parameters, with

examples.
16. Document the list of requirements: prerequisites, minimum OS required,

database connection.
17. Keep logs to ease debugging when your custom actions fail.

That’s it!

Practical Guide: Application Packaging for ISVs

Check out Software Packaging Checklist App to keep track of your installer building process. w
w

w
.a

dv
an

ce
di

ns
ta

lle
r.c

om

1

If you are a developer in charge of building and maintaining the installer package for your
product, this paper is for you. It is meant to help dev. teams in preparing their product
installer for enterprise use. We hope you find this resource both helpful and useful.

By the end of it, you will have a deeper understanding of what IT Pros need from your
installer package and the reasons why, by delivering a comprehensive installer, you will
directly contribute to reducing customer support tickets and repackaging requests.

In practice, the installer is the very first direct interaction of your users with your
application.
And a positive first interaction is essential for your success and a smooth, simple install
experience is a step towards ensuring a higher rate of happy users.

However, dedicating extra resources to your installer could result in having less time to
work and develop your main product.

This is a challenge many of our customers face until they make the decision to give the
right attention to the installer building phase and include it in the product development
plan right from the beginning.

Enterprise or B2B software products have a specific characteristic as they need to be
prepared for eventual repackaging or transformation. We know it as the application
packaging process, and it is a layer that deals with the installation package.

At Advanced Installer, we are privileged to work both with developers and IT
Professionals in enterprises, like you and your colleagues. To share a bit of what we’ve
learned, we put in place a list of recommendations for you to follow when you prepare an
installer to ensure a smooth implementation of your product.

Application Packaging for
independent developers and ISVs

To find out more about the IT Pro’s tasks and activities,
we highly recommend reading The End-to-end
Application Packaging Process - Best Practices and
Tips for Success.

https://www.advancedinstaller.com/software-packaging-checklist.html
https://www.advancedinstaller.com/
https://www.advancedinstaller.com/end-to-end-packaging-process.html
https://www.advancedinstaller.com/end-to-end-packaging-process.html
https://www.advancedinstaller.com/end-to-end-packaging-process.html

Practical Guide: Application Packaging for ISVs

Check out Software Packaging Checklist App to keep track of your installer building process. w
w

w
.a

dv
an

ce
di

ns
ta

lle
r.c

om

2

Use the Software Packaging Checklist App to keep track
of your installer building process.

Print your checklist progress to use it in your status
meetings.

Recommendation:

To make better sense of use of the recommendations, we classified them in the
following topics:The Essentials, Enterprise Deployment, Testing, and Documentation.

Let’s go through them.

1. MSI or EXE?

What installer type is the best to deliver your product?

If your application will be used in an enterprise (e.g. Network Monitoring app), then you
may want to create the package as an MSI installer because of the nature and processes
of the implementation and use.

In an enterprise environment, the deployment of an application is made from central
workstations and the sysadmin usually prefers MSI as it can be customized based on
specific needs and abilities (e.g. removing shortcuts, disabling automatic updates, etc.).

The IT Pros in enterprises prefer working with MSIs because it will allow them to:

• Use silent deployment for all users throughout the network (using SCCM or similar tools).
• Configure the package using standard Windows Installer properties.
• Customize its contents to meet their internal company policies using MSI editing tools

(such as: customizing shortcuts, adding company templates, disabling automatic
updates, etc.).

• Leverage the Windows built-in support for system restore points and automatic repairs for
broken installations.

• Generate verbose logging for debugging purposes, if needed.

Note: There might be cases where you need to make an EXE wrapper containing MSI
package. In this scenario the IT Pro will usually need to extract the MSIs in order to
access all the above listed benefits.

The essentials for building your
installer

https://www.advancedinstaller.com/software-packaging-checklist.html
https://www.advancedinstaller.com/
https://www.advancedinstaller.com/software-packaging-checklist.html

Practical Guide: Application Packaging for ISVs

Check out Software Packaging Checklist App to keep track of your installer building process. w
w

w
.a

dv
an

ce
di

ns
ta

lle
r.c

om

3

However, if your application is targeted towards the end-user, you may want to go with an
EXE package type. The difference is mainly that you’ll be able to get creative with your UI
for the installation and overcome MSI limitations.

As a best practice, we recommend documenting any switches that the installer may use
during the installation process e.g. if a particular action is executed based on a specific
condition.

By default, all installers created with Advanced Installer support silent installation.

You can find the comandlines supported by Advanced Installer here:
https://www.advancedinstaller.com/user-guide/msiexec.html
https://www.advancedinstaller.com/user-guide/exe-setup-file.html

While a patch is useful in many scenarios of the software packaging process, it only
contains the differences between two versions of the same product. This means that
through a patch you can only update a package that is already installed on the target
machine.

For this reason, creating an upgrade package is a better approach. An upgrade package
is a stand-alone installer that can perform a first-time installation when the old product is
not installed on the target machine.

Some of the reasons why an enterprise sysadmin will always use the upgrade package
are:
• IT Pros perform changes in the MSI packages and it’s significantly easier to modify an

upgrade package than a Microsoft Patch (MSP).

With Advanced Installer, you can have multiple builds in
your project. Take advantage of the MSI build to support
Enterprise customers and the EXE build with a premium
UI for your product end-users.

Advanced Installer keeps both builds in sync--no need
for special settings to be set.

2. Support the command line switches for silent installation (and configuration).

3. Create an upgrade package to update to the new version

https://www.advancedinstaller.com/software-packaging-checklist.html
https://www.advancedinstaller.com/
https://www.advancedinstaller.com/user-guide/msiexec.html
https://www.advancedinstaller.com/user-guide/exe-setup-file.html

Practical Guide: Application Packaging for ISVs

Check out Software Packaging Checklist App to keep track of your installer building process. w
w

w
.a

dv
an

ce
di

ns
ta

lle
r.c

om

4

• Patch installations can fail. When IT Pros perform changes on a base MSI (a common
practice in managed infrastructures), there are high chances that the patch will fail
due to internal Windows Installer validations.

• It could be a nightmare to administrate - patches need to reference their base
applications so using patches in the enterprise infrastructure could turn complicated.

• On the vendor’s side it takes more time to build a patch than an upgrade package.

Here’s an article that goes into
how to build an upgrade for your
application:
https://www.advancedinstaller.
com/user-guide/tutorial-major-
upgrade.html

Do not make Internet access mandatory at installation time.

Installation processes may get frustrating for users with slow internet speed and dealing
with large downloads. To avoid this, installers should contain all the resources inside,
requiring no internet connection during the installation process.

Also, try to provide the offline version of the installer just for your app, without including
any prerequisites if your default version is a web-based installer.

However, there are situations when the installer also appoints some runtimes that are
required by the application (e.g. .Net Runtime or Java runtime, etc). This will add an extra
payload to the size of the installer. If the number of users that do not have that runtime
already installed on their machines is small, you may want to add those runtimes from
their online location - to reduce the size of the installer.

Note: In case any runtime is required for installation, the installer will download them at
installation time.

4. Make your installer 100% offline.

https://www.advancedinstaller.com/software-packaging-checklist.html
https://www.advancedinstaller.com/
https://www.advancedinstaller.com/user-guide/tutorial-major-upgrade.html
https://www.advancedinstaller.com/user-guide/tutorial-major-upgrade.html
https://www.advancedinstaller.com/user-guide/tutorial-major-upgrade.html

Practical Guide: Application Packaging for ISVs

Check out Software Packaging Checklist App to keep track of your installer building process. w
w

w
.a

dv
an

ce
di

ns
ta

lle
r.c

om

5

For enterprise deployment

Provide them all separately and specify the order of installation, if such an order is
required.

In Enterprises, the installers are usually installed one by one. So, if you have other
installers bundled, specify them and provide all details that may be needed such
installation order, if any.

All this will be managed by the sysadmin using a configuration management tool.

If you have this support included in your application.

All IT pros need this option.

In the Enterprise environment, updates are handled by the sysadmins, on-demand, and
after the update is verified and confirmed. That’s why they should consider disabling the
auto-updates in an application.

Not only does it avoid additional support inquiries, but it also allows transparency and the
option of disabling automatic updates through dedicated switches.

Otherwise, the installer will be repackaged and packaged into a new installer where
updates are disabled (e.g. if the update is done through a service, then the new installer
will not include that service).

Even if you have the update buried in your application, the PCs of an enterprise network
operate behind a firewall and will have restricted access to your servers to update the
application.

If you have deferred custom actions (the code that modifies the system), also build
rollback custom actions (to revert the changes if something else crashes during the
installation).

The rollback custom actions are performed during the installation rollback and their
purpose is to reverse a custom action that has made changes to the system, e.g. a
deferred custom action.

5. Try not to bundle multiple packages/MSIs into a single one.

6. Provide a command-line switch to disable automatic updates

7. Include building rollback custom actions.

https://www.advancedinstaller.com/software-packaging-checklist.html
https://www.advancedinstaller.com/

Practical Guide: Application Packaging for ISVs

Check out Software Packaging Checklist App to keep track of your installer building process. w
w

w
.a

dv
an

ce
di

ns
ta

lle
r.c

om

6

As you’ve probably noticed, a rollback custom action always precedes the deferred
custom action as it reverses in the action sequence.

A rollback custom action should also handle cases where the deferred custom action
gets interrupted in the middle of the execution. For example, if the user presses the [
Cancel] button while the custom action is being executed.

Although it is convenient to make everything from an immediate custom action as it gives
you access to the installer properties, the only changes that should be made are the ones
that influence the installation process, such as setting and verifying properties.

The forced reboot during installation should be avoided as much as possible. Instead,
you may want to instruct the user for a reboot at the end of the installatio

In an enterprise environment, users belong to a domain and there is a big chance they will
use multiple devices to access the same account.

Don’t Do It: Use Immediate CustomAction For Changing The System State
(advancedinstaller.com)

8. Never modify system resources from immediate custom actions--only deferred ones.

9. Avoid triggering restarts during the installation.

10. Store your application data in the Roaming AppData folder.

Note: In case of an error,
changes cannot be rolled
back if they were made by
immediate custom actions.

https://www.advancedinstaller.com/software-packaging-checklist.html
https://www.advancedinstaller.com/
https://www.advancedinstaller.com/immediate-vs-deferred-custom-action.html
https://www.advancedinstaller.com/immediate-vs-deferred-custom-action.html

Practical Guide: Application Packaging for ISVs

Check out Software Packaging Checklist App to keep track of your installer building process. w
w

w
.a

dv
an

ce
di

ns
ta

lle
r.c

om

7

Information stored in the roaming appdata folder is synchronized between the devices,
therefore the application user data will always be the same - avoiding the need of
manually copying to multiple devices.

If you want to get more information about the reasoning behind this, check the following
article: https://www.advancedinstaller.com/appdata-localappdata-programdata.html

Testing

And make sure you do not include error messages given by your custom actions.

When the installer may be deployed from a central location (e.g. a server) there should
not be any messages that require manual input. This is also available at both install and
uninstall time.

In Enterprise, the installation needs to be successfully deployed under the SYSTEM
account. LOCAL SYSTEM is the account performing the installation for most deployment
tools e.g. GPO deployment, SCCM.

To ensure that your application is installed successfully, you need to act as the LOCAL
SYSTEM account. To test this, use the PsExec.exe from Sysinternals which is the
standard.

• Download PsTools from https://download.sysinternals.com/files/PSTools.zip
• Unzip the content and copy PsExec.exe to C:\Windows\System32
• Open a Command Prompt as admin
• Launch a new Command Prompt using PsExec.exe. By using PsExec.exe you will

open the new Command Prompt in the System Context and the account doing all the
operations will be the LOCAL SYSTEM account.

This is the best way to simulate how the installer
is deployed to the machines in an enterprise
environment.

11. Check the package for UI blocking custom actions on the InstallExecute sequence.

12. Test your package installation under the SYSTEM account, using PsExec tools.

https://www.advancedinstaller.com/software-packaging-checklist.html
https://www.advancedinstaller.com/
https://www.advancedinstaller.com/appdata-localappdata-programdata.html

Practical Guide: Application Packaging for ISVs

Check out Software Packaging Checklist App to keep track of your installer building process. w
w

w
.a

dv
an

ce
di

ns
ta

lle
r.c

om

8

Test your application under all supported environments. With Advanced Installer, you can
use the Run in VM option to start the installation in a virtual machine, or you can simply
copy-and-paste the installer into the virtual machine. The more Operating Systems are
tested, the better.

13. Test your package in VMs (virtual machines), on multiple systems, to cover all your
users.

Documentation

An installation manual is a best practice so that your users know how to handle the
installation. Sooner or later, users will contact the support team for help, and having the
information at hand can help quickly sort unnecessary support inquiries.

Provide documentation for all properties that need to be set. If gathering any user input,
expose the properties that need to be set, with examples.

14. Document the command line switches/options in a dedicated download page (or
PDF) for the IT pros.

15. Document all GUI user inputs (if any) as command line parameters, with examples.

16. Document the list of requirements: prerequisites, minimum OS required, database
connection.

If the application requires any runtimes (e.g. certain C++ version, .Net Framework version
etc), it is convenient for the runtimes to be specified in the proper documentation.

https://www.advancedinstaller.com/software-packaging-checklist.html
https://www.advancedinstaller.com/

Practical Guide: Application Packaging for ISVs

Check out Software Packaging Checklist App to keep track of your installer building process. w
w

w
.a

dv
an

ce
di

ns
ta

lle
r.c

om

9

Write to the MSI log from your custom actions or, even better, to the machine’s event log,
to make it easier to debug whenever one of your custom actions fails.

When troubleshooting failed installations, the MSI log is the first one you should inspect.
In the log file, the actions that fail will be highlighted.

It is useful to have more details of what happened there when troubleshooting falling
custom actions.

If you’re using PowerShell for custom actions, you can write to the MSI installation log by
simply using the “Write-Output” cmdlet into your PowerShell custom action code.

For DTF C# custom action, use the session.log to write in the MSI log: session.Log(“Begin
CustomAction1”);

If using VBScript, use the below code to write the event in the log file:

Ready to give it a try? Take advantage of Software Packaging Checklist App. It will make
your job easier, guide you through all the best practice checks and help you build a better
installation package.

Function WriteToLog
Const MsgType = &H04000000
Set rec = Installer.CreateRecord(1)
rec.StringData(1) = CStr(Session.Property(“AP-
PDIR”))
‘rec.StringData(1) = CStr(“Any type of message can
be wrote here”)
Session.Message MsgType, rec
WriteToLog = 0
End Function

That’s it!

The same applies for any database need. Documenting this type of information is
mandatory in enterprise deployment.

17. Keep logs to ease debugging when your custom actions fail.

https://www.advancedinstaller.com/software-packaging-checklist.html
https://www.advancedinstaller.com/
https://www.advancedinstaller.com/software-packaging-checklist.html

Following the basic rules and best practices for your application packaging software
processes will ensure the quality of your product and give you fewer headaches regarding
the support or possible bugs.

We hope this list gives you a clear overview of what you need to do to ensure smooth
Enterprise use of your software product.

!Best Practices
Validation Testing
Advanced Installer generates builds in accordance with ICE
Validation Standard and industry best practices brought together in
over 15 years of constant contact with our Customers.

Get Advanced Installer 30-Day Full-Feature FREE Trial

www.advancedinstaller.com

Authors:

Bogdan Mitrache, VP of Product
Danut Ghiorghita, Customer Support Lead

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/

	Application Packaging for independent developers and ISVs
	The essentials for building your installer
	1. MSI or EXE?
	2. Support the command line switches for silent installation (and configuration).
	3. Create an upgrade package to update to the new version
	4. Make your installer 100% offline.

	For enterprise deployment
	5. Try not to bundle multiple packages/MSIs into a single one.
	6. Provide a command-line switch to disable automatic updates
	7. Include building rollback custom actions.
	8. Never modify system resources from immediate custom actions--only deferred ones.
	9. Avoid triggering restarts during the installation.
	10. Store your application data in the Roaming AppData folder.

	Testing
	11. Check the package for UI blocking custom actions on the InstallExecute sequence.
	12. Test your package installation under the SYSTEM account, using PsExec tools.
	13. Test your package in VMs (virtual machines), on multiple systems, to cover all your users.

	Documentation
	14. Document the command line switches/options in a dedicated download page (or PDF) for the IT pros.
	15. Document all GUI user inputs (if any) as command line parameters, with examples.
	16. Document the list of requirements: prerequisites, minimum OS required, database connection.
	17. Keep logs to ease debugging when your custom actions fail.

	That’s it!

