
TRAINING BOOK

Foreword
For many years, the application packaging industry has been ruled by a few known giants.
This lack of diversity in packaging tools for IT professionals led to a market where thousands
of US dollars were spent on acquiring licenses for packaging tools and their training
materials.

Ever since we launched the first version of Advanced Installer, democratizing the application
packaging industry became our North Star. We made it our mission to deliver not just the
best packaging tool, but also the best documentation and support services. That is why all of
our documentation is available for free on our website and updated consistently.

We have over 200.000 lines of content in support documentation, hundreds of industry-
focused blog articles, over 300 videos on our YouTube channel, along with numerous free
tools, and free books (MSIX Packaging Fundamentals, MSI Packaging and a new one that will
be released by the end of 2021).

With this new free book written by Alex, we are going one step ahead on our journey. Starting
today, you no longer need to spend thousands of dollars to learn how the most used
software packaging and deployment technology works, you can do it all for free using this
book and our dedicated free video academy.

The team at Advanced Installer has over 200 years of experience accumulated in packaging
and deploying Windows applications. Alex shows in a glimpse that experience in this new
book.

When it comes to learning a new technology, Alex is the teacher you need. When he is not
tinkering with his own tools and scripts, or researching MSIX, he loves sharing the secrets of
Windows Installer.

Advanced Installer has enabled hundreds of thousands of software engineers all over the
world to package and deliver applications to millions of end-users. By continuously
democratizing this industry we want to help you deliver the first billion of installations to your
end users.

Let’s go!

Bogdan MItrache, VP of Product Advanced Installer

Contents
Windows Installer

1 | Introduction

3 | Tools used for application
packaging

MSI package structure
5 | Package definition

5 | Package structure

11 | Package internal information

66 | Upgrades

69 | De-hardcoding and Variabilization

70 | Vendor MSI

72 | Msiexec.exe commands

74 | Active-Setup Mechanism

How to Create Basic MSIs
75 | Advanced Installer

81 | Wise Package Studio

Capture/Repackage EXE installers
95 | Repackaging Best Practices

103 | Advanced Installer

113 | Wise Package Studio

Create MSI Transform files (MST)
122 | Advanced Installer

124 | Wise Package Studio

Create Patches (MSP)
128 | Advanced Installer

133 | Wise Package Studio

Creating Suite Installations

140 | Create the project

141 | Setup your suite installer product
details

142 | Add your setup packages

142 | Create a custom selection dialog

144 | Additional Install Options

145 | Configure Output Package

145 | Build Project

Helpful tools
146 | ORCA

147 | Systracer

157 | Process Monitor

162 | Process Explorer

163 | Beyond compare

164 | Powershell App Deployment
Toolkit

175 | WMI Explorer

176 | List features and components for
installed MSIs

177 | Wilogutl

Debugging
178 | Logs

184 | Event Viewer

Quality Assuring the MSI

1Powered by AdvancedInstaller.com

Windows Installer
Introduction
Those who deal with software product administration inside a company know how complex
an application’s installation and monitoring process is.

Its complexity is due to various factors, especially regarding the setup of software products,
most of which present roadblocks that could slow down your processes.

Some of these roadblocks include the inability to properly handle the resources and other
products, the lack of easy customization, the difficulty of making decisions regarding a part
of the application needed by the user, and the struggle that comes with the diagnosis and
repair of possible configuration problems.

And here’s where Windows Installer comes to help. As part of the Windows operating system,
Windows Installer is a base service used to manage software products. This includes the
following aspects:

• Installations

• Modifications

• Improvement and uninstallation of software products

• Reliable application customization

• Solving Configuration issues

Windows Installer also provides a better handle of commonly used resources, imposes
conditions regarding the usage of files with different versions, and fixes rolling applications.

This book gives a deeper overview of the basic features provided by the Windows Installer
technology and its uses.

It is particularly aimed at beginner IT Pros that want to understand the Windows Installer
technology, how the installer structure is composed, learn basic scenarios with specialized
applications, adopt best practices, discover helpful tools, and get more knowledge on how to
debug installations.

Note: Classic installers (before Windows Installer) don’t know what to do when a resource
(for example, a file) is already present on the machine from another application.

2Powered by AdvancedInstaller.com

Before Windows Installer (scripting) – legacy packages
Before Windows Installer, software products used various technologies at the application’s
setup request - each of them containing specific installation rules.

It was common to encounter various errors during installation. For example, you could find
an older version of a file installed on top of a newer version. Certain setups didn’t take into
account the resources used along other applications. As a result, the installation and
uninstallation of some applications compromised the functionality of others.

Since the setup imposed its own rules,it caused conflicts when various applications
interacted between them and the modification and improvement of the applications triggered
other faulty behavior. When an application stops working, any attempt to repair it could cause
the system’s destabilization, leading up to the whole system’s resettlement.

Fulfilling a need – when and where Windows Installer was
published
Windows Installer was released to allow for a set of common rules in the applications’
administration (installing, repairing, uninstalling).

Its release led to the disappearance of the problems mentioned above, and furthermore,
eased the work of the system administrator. It was published at the same time as Office
2000, making it the first application based on Windows Installer technology.

What is Windows Installer?
Windows Installer is a service provided by the Windows operating system to manage
software products.

Windows Installer is not a distribution technology for software products. But, software
products distributing technologies use Windows Installer because of the benefits it offers.

What are Windows Installer’s Benefits?
Some of the main benefits offered by Windows Installer include:

• Standard formatting (Windows Installer created the MSI package, a new application
format)

• Transactional install and rollback (Windows Installer packages can be easily installed
according to the user’s requirements, and if the installation fails, all the actions taken
upon that moment can be erased)

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

3Powered by AdvancedInstaller.com

• The Self-healing option (or self-repair) for corrupted or erased files (when certain files
are corrupted or erased, the user can trigger the Repair option, which fixes those files)

• Installation on request (packages can be installed in one simple click whenever the user
wants)

• Packages can use Transform type files (which allows a package to be customized)

• Packages can use patches (great for fixing bugs in the applications)

• Managing the state of an application (Windows Installer offers developers an API for
monitoring the state of a package - whether it is or it isn’t installed on the machine)

• Administrator’s rights are no longer necessary for installing applications (this depends
on whether the application is user-targeted or not)

• Scriptable API (for manipulating MSI type files)

• Packages can be managed via the MSIEXEC.exe command line.

What applications should not be repackaged?
In certain circumstances, we can deal with applications that shouldn’t be repackaged, here
are some of them:

• Vendor MSI files. Instead, you can customize them using Transform files.

• Patches, updates, and hotfixes for the operating system, Windows Installer Service,
MDAC. Those applications shouldn’t be repackaged because they influence Windows
security rules.

• Windows Media Player, Microsoft Internet Explorer, antiv irus software, and device
drivers. These types of applications generate changes in the operating system which
includes the protection of Windows files.

When it is still necessary to install a driver, an antivirus, or a hotfix - these are the options:

• The original setup was to be rolled using MSI as a “hiding place” (from now on, we will be
referring to this as a “wrapper” or the “wrapping method”).

• Silently install drivers using the tools provided by Microsoft (dpinst.exe, DIFxAPI, etc).

Tools used for application packaging
• Advanced Installer

• Wise Package Studio

• Orca

• WiX Toolset

4Powered by AdvancedInstaller.com

Advanced Installer is one of the most popular tools for repackaging applications. Advanced
Installer’s GUI creates the MSI with the primary goal of delivering quality applications to the
end-user. It achieves that by scanning the operating system, installing the application that
has to be repackaged, then scanning the system one more time which results in an MSI from
the difference between those two scans.

Orca is a tool used for editing MSIs, which offers access to all the MSI tables, but it is not
meant to be a “full-featured” tool for creating MSIs.

It has the advantage of being easier to use than full-featured installers, but it doesn’t work as
a replacement for them. If you’re handling big packages, Orca saves the MSI and loads the
tables a lot faster than other package manipulating software would.

Wise Package Studio was discontinued, but it is still very popular and used at the time this
article was written (end of 2020).

WiX Toolset was released by Microsoft back in 2004, and it was their first-ever open source
license project.

Some of the most popular packages from Microsoft were built using WiX - including Office
2007, Visual Studio 2005/2008, and SQL Server 2005.

WiX stands for Windows Installer XML, and instead of having a graphical interface as we’re
used to with other software packaging tools, WiX uses a different approach. You can look at
WiX more like a programming tool because it uses XMLs to declare and define what
elements are inside a package and what exactly happens during an installation.

WiX is designed for highly skilled software packagers and not for beginners, which is why it
will not be reviewed in this book.

We will have a look further at both Advanced Installer and Wise Packaging Studio to see how
they behave in different scenarios.

You can try Advanced Installer by downloading it from here

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://www.advancedinstaller.com/download.html

5Powered by AdvancedInstaller.com

MSI package structure
Package definition
A package contains all the information Windows Installer needs for installing or uninstalling
an application or a software product, and for rolling the graphical interface for the user.

The package is represented by a file with the .msi extension (Windows Installer database),
which includes the database, and the data streams for different parts of the installation.

The .msi file can also have one or more transforms (.mst files), internal or external files,
needed for the installation.

Application developers must authorize installations to use Windows Installer.

Because Windows Installer organizes the installations around features and components, and
deposits all the information in a relational database, the authorization process for the
installation of a package requires the following steps:

• identifying the features which will be presented to the users

• organizing the application in components

• populating the database with information about the installation

• validating the package

Package structure
• Features

• Components:

• Files

• Registries

• Shortcuts

• Extensions

• Services

• Odbcs

• System variables

• Custom Actions

6Powered by AdvancedInstaller.com

MSI Package Resources - Features
Applications are divided into features according to their functionality.

A feature represents a functional part of an application and it can be installed independently
from the entire application.

The specific feature tables allocated towards Windows Installer are Feature and
FeatureComponent.

Feature Table

Feature Feature_
Parent

Title Description Display Level Directory Attributes

Feature Table

This table defines the logical structure of the features. In it, you can find information such as
how features are related (in the columns Feature and Feature_Patent), the title of the feature
with its description (in the Title and Description column), and the feature’s installation level.

A feature can have many subfeatures. The dependency between subfeatures and parent
features is the following: if a subfeature is set to be installed, the parent feature will be
automatically installed at the same time, but if the parent feature is set to be installed, it is
not mandatory for the subfeature to be installed.

A feature can be set to be installed (or not) by modifying the value of the column Level.

Setting the value to 0 stops the feature from being on display. For a feature to be installed,
the value from the column Level must be higher than 0 and at the same time, smaller or equal
to the current INSTALLLEVEL.

More details about Feature Properties can be found here.

Observations:

With captured applications, we have one mandatory feature in the package (the number
of components that can be added to a feature should not exceed 1600 exceeding this
number will, create new features)

Vendor MSI applications are left as they are and will be controlled using the properties
or Transform Files.

Note: The relationships between features are hierarchical.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/feature-table
https://www.advancedinstaller.com/user-guide/feature-properties.html

7Powered by AdvancedInstaller.com

Read the Properties section, for more information about the INSTALLLEVEL property.

FeatureComponents Table
The FeaturesComponents table defines the relationship between features and components.
For each feature, this table lists all the components that add up to a feature.

FeatureComponents Table

Columns:

Feature - an external key from the first column of the Feature table.

Component - an external key from the first column of the Component table.

Components can be shared by two or more features, meaning that the same component can
be referred to by two or more features.

Components
Windows Installer installs and uninstalls an application in pieces called components, each of
which has a unique code assigned called a GUID. Components are collections of
resourcesthat are always installed or uninstalled as a whole on the computer. Resources
could be files, registries, shortcuts, or basically anything else that can be installed..

Components represent the base unit of a package, a piece of the application/products that
will be installed. They contain a file or group of files, COMs (Component Object Model, they
can be a dll or an exe), registries, shortcuts, etc.

Components are hidden from the user and when a user chooses to install a feature, Windows
Installer will determine which components must be installed to produce that feature.

Remarks: there is a maximum limit of 1600 components per feature using Windows NT/
Windows 2000 and a limit of 800 components per feature using Windows 95 and
Windows 98.

https://docs.microsoft.com/en-us/windows/win32/msi/featurecomponents-table
https://docs.microsoft.com/en-us/windows/win32/msi/component-table

8Powered by AdvancedInstaller.com

As you will see, Windows Installer always installs or uninstalls a component as a whole
piece; it monitors each component on the base of the GUID id, specified in the Component
table.

Since components are often shared, packagers must follow strict rules when specifying the
components of a feature or an application.

This is essential for the correct functioning of Windows Installer’s “component tracking

mechanism”.

The Rules to Organizing the Applications into Components
Components must be created so they can be installed and uninstalled without damaging
other components. Uninstalling a component should not leave resources (such as unused
files, registries, or shortcuts) behind. To make sure we don’t do this, we need to organize the
resources we have into components following the next set of rules:

• You should never create two components that install a resource using the same name or
the same location. When you duplicate a resource, we recommend using a unique name
and location for every component.

• Two components can not have the same files as a “key path”. The key path must be a
certain file or directory that belongs strictly to a component and allows Windows Installer
to detect the component. If two components have the same file as a key path, Windows
Installer will not know which of them is installed and which one is not. Two components
can have the same directory as a key path, they just can’t have the same files.

• It’s not recommended to create components with resources that require to be installed
in multiple directories on the user’s system. Windows Installer installs all the resources
from a component in the same directory. It is not possible to install specific resources in
subdirectories.

• Multiple COMs shouldn’t be included in the same component. If a component contains a
COM, it must be a key path.

• More than one folder from a component shouldn’t be mentioned as a target for a
shortcut.

Observation: If two components have the same ID, they are treated as multiple instances
of the same component, regardless of their content. Only one instance of a component
can be installed on the computer at a time.

More information about Component Properties can be found here.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://www.advancedinstaller.com/user-guide/component-properties.html#component-properties

9Powered by AdvancedInstaller.com

Defining the Components
To organize an application into components, we recommend to follow the next steps:

1. Determine the hierarchical structure of all the directories and files (as well as other
resources) used by the application.

2. Identify files, registries, shortcuts, and other resources used by various applications --
these are provided by components that already exist, like Merge Modules.

3. Define new components for each .exe,.dll, and .ocx type file. Those files are defined as
the key path for the component to which they belong -- and a GUID is attributed to each
component.

4. Define a component for each file that is the target of a shortcut. Those files are set as the
key path for the component to which they belong.

5. Group the remaining resources from all the directories since they should be delivered
together. If a pair of resources need to be delivered separately in the future (in a newer
package version), it is recommended for them to be put into separate directories. A
component for each directory must be defined.

6. To improve the performance of a package, itt is a good practice to keep a small
number of components. When Windows Installer has to rigorously verify the validity of
the application, it will be divided into many components. In which case, any file can be
chosen as a key path.

7. Add registries to already created components. Any registry that references a file must be
included in the component that contains that file. All the other registriesmust be grouped
logically together with the files that need them.

10Powered by AdvancedInstaller.com

Component Table

Component Table

You can find a list of Components in the Component table which includes the following
columns:

Component

• the primary key of the table which identifies the registered component

Component id

• a unique identifier of the GUID component

• all the letters from GUID are capital

• if the column is null, Windows Installer does not register the component and it can not
uninstall or repair it.

Directory

• an external key of an entrance from the Directory table

Attributes

• this column contains a bit flag that specifies diverse settings of the component

Basic attributes:

0 = the component has a file as a key path (for more detailed information consult msi.chm)

4 = the component has a registry as a key path

32 = the component has an ODBC as a key path Settings (various values for different settings
are being added the three basic attributes)

8 = a shared dll is being incremented

16 = Windows Installer reevaluates the condition from the Condition column at the
reinstallation of the package

128 = Windows Installer does not install or reinstall a component if the key path of the
component already exists.

Condition - this column contains a conditional statement, which controls if a component is or
isn’t already installed; if the condition is null or evaluated as true, then the component is
installed; if the evaluation condition is false, the component does not install.

Key path - this value points towards a file or directory which belongs to the component that
Windows Installer uses to detect the component.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

11Powered by AdvancedInstaller.com

Two components can not share the same resource as a key path. If the column isn’t null, then
the key path can be a key from the Registry table, ODBC Data Source, or Files depending on
the value from the Attributes column.

If the column is null, you can use the directory from the Directory column as a key path.

To install an empty component or create an empty directory on the machine, you need to
create an entry in the Create Folder table.

If the component contains WFP files, those must be specified as Key Path.

Package internal information

Merge Module
Merge Modules provide a standard method through which software developers deliver
components shared by Windows Installer. They are used to deliver shared resources: files,
registries, etc to the applications in the form of a composed file.

A Merge Module is similar in structure to a simplified MSI. But, a Merge Module can not be
installed by itself -- it must be integrated inside a package. There are free and paid solutions
available for packagers that wish to use Merge Modules databases. You can create new
Merge Modules using one of the multiple tools that have Windows Installer as a base (e.g.
ORCA).

When integrating a Merge Module inside an .msi package, all of the information and
necessary resources for installing the components delivered in the Merge Module get
incorporated into the .msi file.

A Merge Module is needed only for installing components, and it is not accessible to the
user. Because all of the information needed for the installation of the components is
delivered inside a single file, the Merge Module can eliminate conflicts caused by older
versions, lack of certain registries, and incorrectly installed files.

The Merge Module is indicated by the .msm extension. It can not be installed on its own
because it lacks some vital tables that are usually present inside a .msi.

Here are the specific tables for Merge Module:

• ModuleComponents

• ModuleDependency

• ModuleExclusion

• ModuleSignature

Advanced Installer allows you to easily create merge modules. Merge modules are the
standard way for distributing Windows Installer components and setup logic. Learn how to
achieve this with Advanced Installer here

https://docs.microsoft.com/en-us/windows/win32/msi/modulecomponents-table
https://docs.microsoft.com/en-us/windows/win32/msi/moduledependency-table
https://docs.microsoft.com/en-us/windows/win32/msi/moduleexclusion-table
https://docs.microsoft.com/en-us/windows/win32/msi/modulesignature-table
https://www.advancedinstaller.com/user-guide/merge-modules-feature.html#merge-modules-feature

12Powered by AdvancedInstaller.com

Taking it as a self-standing whole, a Merge Module should not be modified under any

circumstances. All of the information they contain can be found inside the .msi.

Files
This is one of the few items that Windows Installer can not recreate or reproduce. Files can
be stocked individually, near msi, and also compressed into a “cabinet” file (internal or
external).

Files use these specific tables: File Table and Removefile Table.

File Table

File Table

Let’s go through every column in the File Table:

• File - a unique identifying key of the file inside the msi database;

• Component - an external key from the first column of the Component table - this field
identifies the component that controls the file;

• FileName - the name of the file

• File Size - the size of the file in bytes

• Version - the version of the file

• Language - the list of id for the language of the file, separated by commas

• Attributes - bit flags with specifications for the file

• Values

• Read-Only file

Advanced Installer provides a powerful GUI to make it easy to create and manage Merge
Modules. Check it out.

Advanced Installer offers a quick and easy way to manage your application files and
shortcuts in the Files and Folders page.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/file-table
https://www.advancedinstaller.com/user-guide/merge-modules.html#merge-modules
https://www.advancedinstaller.com/user-guide/winmobile-files.html#winmobile-files

13Powered by AdvancedInstaller.com

• Hidden file

• System file

Sequence - the order of the cabinet files and the files inside the media

During the installation, the Installer must determine if a file should or shouldn’t be installed
based on the flag of the component where it is located.

Things get complicated when there is an existing file with the same name and placement on
the machine (as the one installed from the MSI).

In these situations, the Installer verifies the file’s Version, the creation Date, and the
Language. The Installer uses the following rules to determine the installation of said file:

• The higher version wins - the file with the highest version will always overwrite the
existing file on the machine.

• File with a version - a file with a version will always be installed over an unversioned file.

• Product’s language favorization - if the installed file has a different language than the file
already located in the machine, the file matching the language of the installed product
will be prioritized.

• Keeping the multi-language file - it will keep the file that bears multiple languages
regardless if it is the file being installed or the one already present on the machine.

Note: Files can be versioned or unversioned.

14Powered by AdvancedInstaller.com

Removefile Table
This table contains the lists of the files that will be erased.

You have the choice to erase files during installation, repair, or uninstallation of packages.

If there is no file specified, the empty directory will be erased.

RemoveFile Table

Going through the RemoveFile columns:

• FileKey - the primary key for identifying entrances inside the database.

• Component - the external key in the first column from the Component table; this field
refers to the component that controls the file that will be erased next.

• FileName - this column contains the name of the file that will be erased; if the column is
empty, then the specified directory will be erased with the condition for it to be empty.

• Dir Property - the name of the property of the path directory where the file that will be
erased is located. This property can be the name of a directory from the Directory table,
the value of a property set up by a system search, or any other property that refers to a
directory.

• IntallMode must be one of the following values:

1. it erases only when the associated component is installed

2. it erases only when the associated component is uninstalled

3. it erases any of the above-mentioned cases

Example - *.tmp - all the files with the tmp extension.

Registries
Registries are a database that keeps different settings of the operating system.

They contain information and settings for all hardware devices, software products from the
system, users, etc. When a user modifies certain settings from the Control Panel, extensions,
system policies, or from other installed applications, those modifications are found inside
registries.

Remarks: Inside the FileName column, you can use names of the files with characters like
*(any character) or? (unknown character).

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/removefile-table

15Powered by AdvancedInstaller.com

The structure of the registries
Registries are divided into a number of logical sections or “keys”. They will have the name by
which they were accessed with Windows API -- it starts with “HKEY”(Abbreviation from
“Handle to Key”); often they are abbreviated with a name formed of 3-4 letters which starts
with “HK”. The Windows operating system contains two hives: HKEY_LOCAL_MACHINE and
HKEY_USERS, just for easy access to the information the Registry Editor shows 5 hives:

• HKEY_CLASSES_ROOT

• HKEY_CURRENT_USER

• HKEY_LOCAL_MACHINE

• HKEY_USERS

• HKEY_CURRENT_CONFIG

Each of those “keys” is divided into “subkeys”, which can contain other subkeys. Also, any key
can contain entrances with different values.

The values of those entrances can be as following:

• String

• Binary

• DWORD (a number between 0 and 4.294.967.295[232-1])

• Multi-String

• Expandable

Registry keys are specified with a syntax similar to Windows paths, using backslashes to
indicate the hierarchical level.

For example, HKEY_LOCAL_MACHINE\Software\Microsoft\Windows refers to the “Windows”
subkey of the “Microsoft” subkey of the “Software” subkey of the HKEY_LOCAL_MACHINE key.

Values are not referenced by this syntax. Value names can contain “\”, leading to ambiguities
when referenced using the above syntax.

The HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER nodes have a similar structure, the
applications look for their settings in the keys HKEY_CURRENT_USER\Software\Vendor’s
name\Version\Settings name and if the settings are not found, they then search in the same
location but using HKEY_LOCAL_MACHINE.

When writing the settings, the procedure is reversed - the settings are first written in HKEY_
LOCAL_MACHINE, but if they do not have rights to write here, then the setting gets stored in
HKEY_CURRENT_USER.

16Powered by AdvancedInstaller.com

HKEY_CLASSES_ROOT
Abbreviated HKCR, HKEY_CLASSES_ROOT stores information about registered applications,
including file associations (extensions), and registries that help record the files used by
applications.

Starting with Windows 2000, HKCR is a compilation of HKCU\Software\Classes and HKLM\
Software\Classes.

If a certain value is in both subkeys, then the one in HKCU\Software\Classes is used.

Any change in HKEY_CLASSES_ROOT actually occurs in the corresponding CLASSES
subkeys (either HKCU or HKLM). The same rule applies the other way around.

If a certain value is in both subkeys, then the one in HKCU\Software\Classes is used.

Any change in HKEY_CLASSES_ROOT actually occurs in the corresponding CLASSES
subkeys (either HKCU or HKLM). The same rule applies the other way around.

HKEY_CLASSES_ROOT contains two types of data:

1. Keys and values that associate extensions with various programs (extension - a series of
keys that begin with a period, except for the first key with *. These keys can contain any
number of characters.)

HKEY_CLASSES_ROOT Registry

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

17Powered by AdvancedInstaller.com

2. The configuration data of COMs, Visual Basic programs, etc.
This configuration data uses:

• Program Identifiers (ProgID) - subkeys in HKEY_CLASSES_ROOT that define actions that
can be performed by various programs on a file: bat file, doc file, inifile. Some identifiers
associate programs with COMs.

COM Information in HKEY_CLASSES_ROOT Registry

• Other classes of information that uniquely identify a COM, such as an ActiveX control
(CLSID, Interface, TypeLib, AppId, etc.). Ex: HKCR\ CLSID contains all class identifiers.
Each identifier is a unique number of 16 bytes.

HKEY_CURRENT_USER
Abbreviated HKCU, HKEY_CURRENT_USER stores settings that are specific to the user
currently logged in to the machine. HKCU is a mirror of the current user’s registry in HKEY_
USERS.

HKEY_LOCAL_MACHINE
Abbreviated HKLM, HKEY_LOCAL_MACHINE stores settings that apply to all users on that
machine. This key is found in the %SystemRoot%\System32\Config\system file on the
NT-based version of Windows. Hardware information is located under the SYSTEM key.

18Powered by AdvancedInstaller.com

HKEY_LOCAL_MACHINE storage file

HKEY_USERS
Abbreviated HKU, HKEY_USERS stores the corresponding HKEY_CURRENT_USER subkeys for
each user registered on the machine.

Under HKEY_USERS, you can see which settings are applied for all users on the machine,
while HKEY_CURRENT_USER only shows a small portion of the HKEY_USERS hive -- the
portion for the current logged in user.

HKEY_CURRENT_CONFIG
Abbreviated HKCC, HKEY_CURRENT_CONFIG stores information during run; the information
in this section is not permanently stored on the hard disk, but regenerated when the system
starts.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

19Powered by AdvancedInstaller.com

Editing registry
Manual editing

You can manually edit the Registry using the regedit.exe or regedt32.exe programs. Note that
negligent editing of registries often leads to irreversible errors, so it is recommended to
always have a backup of them.

Regedit exe

Command-line editing

You can manipulate the Registry from the command line using the reg.exe utility-- which is
included within Windows and can be downloaded separately.

20Powered by AdvancedInstaller.com

Reg.exe utility

A reg file (a standard file for storing the registry that can be edited) can be imported from the
command line, using the syntax “Regedit /s file”, where /s leads to the addition without
asking the user for input (silent).

If the /s parameter is omitted, then the user will need to confirm the operation.

When using the /s regedit parameter, it does not return an error code if the operation fails as
reg.exe does.

Registry permissions can also be manipulated through the command line using the
subinacle.exe utility.

For example:

subinacl.exe /keyreg HKEY_LOCAL_MACHINE\software /grant = Administrator

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

21Powered by AdvancedInstaller.com

Gives full access to the administrator account on these keys.

Script editing

Some languages, such as VBScript, provide functions for editing/manipulating the registry.

To add a registry key with VBScript, you must use the RegWrite function:

Set WshShell = WScript.CreateObject(“WScript.Shell”)

WshShell.RegWrite “HKCU\KeyName\”,””, “REG_SZ”

To delete a registry key with VBScript, you must use the RegDelete function:

Set objShell = Wscript.CreateObject(“Wscript.Shell”)

objhell.RegDelete “HKCU\Control Panel\Desktop\MyValue”

To read a registry key with VBScript, you must use the RegRead function:

strLogonServer = “HKEY_CURRENT_USER\Volatile Environment\LOGONSERVER”

strDNSdomain = “HKEY_CURRENT_USER\Volatile Environment\USERDNSDOMAIN”

Set objShell = WScript.CreateObject(“WScript.Shell”)

WScript.Echo “Logon server: “ objShell.RegRead(strLogonServer)

WScript.Echo “DNS domain: “ objShell.RegRead(strDNSdomain)

Location of registries
The Registry is stored in several files. Depending on the version of Windows you’re using,
there are different files and different locations on the machine.

In Windows, the following files that store registry can be found in %SystemRoot%\System32\
Config:

• Sam - HKEY_LOCAL_MACHINE\SAM

• Security - HKEY_LOCAL_MACHINE\SECURITY

• Software - HKEY_LOCAL_MACHINE\SOFTWARE

• System - HKEY_LOCAL_MACHINE\SYSTEM

• Default - HKEY_USERS\Default

• Userdiff

https://ss64.com/vb/shell.html
https://ss64.com/vb/shell.html

22Powered by AdvancedInstaller.com

Registry storage files location

The following files are found in the specific directory of each user:

%UserProfile%\Ntuser.dat - HKEY_USERS\<User SID>

%UserProfile%\Local Settings\Application Data\Microsoft\Windows\Usrclass.
dat - HKEY_USERS\<User SID> _Classes

Registry specific tables
In MSI, you have two series of tables for Registry:

• specific tables that register COMs and extensions (AppId, Class, Extension, MIME, ProgId,
TypeLib, Verb) and

• tables that add Services, drivers or ODBCs (ODBCAttribute, ODBCDriver,ODBCDataSource,
ODBCSourceAtribute, ODBCTranslator, ServiceInstall).

The Registry table contains the rest of the registry that cannot be included in the tables
mentioned above.

When populating registry tables, it is important to try to minimize the number of registries
placed in the Registry table and maximize the use of advertised tables.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/appid-table
https://docs.microsoft.com/en-us/windows/win32/msi/class-table
https://docs.microsoft.com/en-us/windows/win32/msi/extension-table
https://docs.microsoft.com/en-us/windows/win32/msi/mime-table
https://docs.microsoft.com/en-us/windows/win32/msi/progid-table
https://docs.microsoft.com/en-us/windows/win32/msi/typelib-table
https://docs.microsoft.com/en-us/windows/win32/msi/verb-table
https://docs.microsoft.com/en-us/windows/win32/msi/odbcattribute-table
https://docs.microsoft.com/en-us/windows/win32/msi/odbcdriver-table
https://docs.microsoft.com/en-us/windows/win32/msi/odbcdatasource-table
https://docs.microsoft.com/en-us/windows/win32/msi/odbcsourceattribute-table
https://docs.microsoft.com/en-us/windows/win32/msi/odbctranslator-table
https://docs.microsoft.com/en-us/windows/win32/msi/serviceinstall-table
https://docs.microsoft.com/en-us/windows/win32/msi/registry-table

23Powered by AdvancedInstaller.com

Windows Installer does not distinguish between the various keys in the registry table and
cannot use the internal logic needed to take advantage of some Windows Installer
advantages (such as “advertising” for example).

The tables containing the registry are interconnected and dependent on each other as seen
on the diagram below. The figure also shows the Component, Feature, File and Icon tables.
They are not part of the group of tables that contain the registry, but are entered in the
schema to highlight the logic of the schema

Later in this book, we will discuss the second series of tables.

Verb Feature TypeLb Environment

Extenstion

Component

Class

Selfreg

File

Icon

MIME

Registry

AppID

DataSource Driver ODBC

ServiceInstall

ProgID

ODBC
Translator

Extension
Verb

Sequence
Command
Argument

Future_Parent
Title
Description
Display
Level
Directory
Attributes

Future_Parent LibID
Language
Component

Version
Descrpition
Directory
Feature
Cost

Environment

Name
Value
Component

Extension
Component

ProgID
Mime
Feature

CLSID
Context
Component

ProgID_Default
Description
Insertable
AppID
File TypeMask
Icon
Iconindex
DefinprocHandl
Argument
Feature

Component

ComponentID
Directory
Attributes
Condition
KeyPath

File
Cost

File

Component
FileName
FileSize
Version
Language
Attributes
Sequence

Name

Data

ProgID

ProgID_Parent
Class
Description
Icon
IconIndex
Insertable

Registry

Root
Key
Name
Value
Component

AppID

RemoteServerName
LocalService
Serviceparameters
DllSurrogate
ActivateAtStorage
RunAsInteractiveUse

OOBCDataSource Table
OOCBSourceAttribute
Table

ODBCDriver Table
ODBCAttribute Table

Translator

Component
Description
File
File_Setup

Name
DisplayName
ServiceInstall
ServiceType
StartType
ErrorControl
Dependencies
Component

ContentType

Extension
CLSID

24Powered by AdvancedInstaller.com

Extension

The Extension table contains information about file name extension servers that must be
generated as a part of product advertisement.

Columns:

Extension

• the extension associated with this entry

• must not exceed 255 characters

• the dot does not appear in the name of the extension

ProgId

• program ID associated with this extension

• external keys in the ProgId table

Feature

• foreign key in the Feature table

Component

• foreign key in the Component table

• this column controls the installation of the extension

MIME

• foreign key in the MIME table

• the content type associated with this extension

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/extension-table

25Powered by AdvancedInstaller.com

ProgId

This table associates program identifiers with class identifiers.

ProgID table

ProgID columns:

ProgId - program id or version-independent program id.

The progId will be written to the registry only if that progid has an associated CLSID (Class
table, ProgId_Default column) or if the progid has an associated extension (Extension table,
ProgId_ column), and that extension has an associated verb (Verb table).

ProgId_Parent

• defined only for independent version program ids

• is a foreign key in the ProgId column.

ProgId_Parent is defined for the version-independent program IDs. This field is the foreign
key in the ProgId column. To define an independent program ID, the ProgId_Parent field must
be filled into the corresponding ProgId.

Version Independent Program IDs are written to the registry only when they function in
association with a CLSID. The ProgId’s child no longer needs to be associated with its CLSID
(Class_ column in the ProgId table), only the parent needs to be associated with the CLSID.

Class

• a foreign key in the Class table

• this column must be null for an independent program id version

The Class_ column is the foreign key in the Class table. This column must be Null for a
version independent program ID (ProgId son).

Observation: The ProgId table only knows how to register one child of a ProgId. If a ProgId
has more than one child and you try to register all of them in the table, you will see that the
table records only one child. If you have this situation, register only one child in the table,
and associate the other children with CLSID in the table and the HKCR registry\
product_name\CurVer write it from the Registry table.

https://docs.microsoft.com/en-us/windows/win32/msi/progid-table

26Powered by AdvancedInstaller.com

If this field is Null, the program ID will be registered via the Extension table (ProgId_ column),
if that extension has an associated verb (Verb table). ProgIds registered in this way do not
know how to register ProgId son

Description - a short description associated with this program id

Icon

• foreign key in table Icon

• specify the icon associated with this program id

• this column must be empty for an independent program id version

IconIndex

• the icon index

• this column must be null for an independent program id version

Verb

This table associates various actions with the extensions in the Extension table.

Verb Table

Verb columns:

The Extension_ column represents the extension associated with that verb. This field is the
foreign key in the Extension table.

The Verb column represents the verb associated with the respective extension. The following
equivalent registry is written:

HKEY_CLASSES_ROOT\ProgId_name\shell\verb_name

The Command column represents the text displayed by the context menu of the extension
(right click on the extension: e.g. Open, Edit, Print).

Argument column - in this field you can define a property in the MSI -- the value of the
property will be written in the registry.

The following equivalent registry is written in:

HKEY_CLASSES_ROOT\ProgId_name\shell\verb_name

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/verb-table

27Powered by AdvancedInstaller.com

This registry has the value: the keypath file on the component to which the argument value
extension belongs to.

For example, if the default registry has the value:

“C:\Program Files\ABC\abc.exe” “%1” “C:\Program Files\ABC\abc.exe”

Then “C:\Program Files\ABC\abc.exe” is the path to the keypath file on the component
that belongs to the extension, and “%1” “C:\Program Files\ABC\abc.exe” is the
argument.

The Sequence column represents the sequence of commands associated with an extension.
The verb with the smallest sequence becomes the default verb of that extension.

It appears in the registry as follows:

HKEY_CLASSES_ROOT\program_name\shell

TypeLib

This table provides information for registering type libraries.

TypeLib Table

TypeLib columns:

The LibID GUID column identifies the TypeLib. In the registry it is written at the location:

HKEY_CLASSES_ROOT\typelib\{Identificator_TypeLib}

The Language column represents the language of Typelib. It must be a non-negative number
(e.g. 0, 1).

The Version column represents the typelib version. “Minor version” and “Major version” are
4-byte encodings. “Minor version” is represented by the last 8 bits. “Major version” is
represented by the 16 bits located in the middle.

Observation: If you write [!Filename] in the registry (in the Argument column), it will write a
long path. It seems that the installer does not know how to read the shortcut in this
column, although its type is Formatted.

Note: This table is referenced by the standard RegisterExtensionInfo and
UnregisterExtensionInfo actions.

https://docs.microsoft.com/en-us/windows/win32/msi/typelib-table

28Powered by AdvancedInstaller.com

Example:

If the version of a Typelib is 1.2 in the table we will write the value 258 for the following
reasons:

• 2 in binary (base 2) is 10

• 1 in binary is 1

So in 4-byte transcription it would be: 00000000 00000000 00000001 00000010.If you turn
this number into base 10, it will result in 258, the value to be written in the table (in the
Version column).

In the registry, it will be written as follows:

HKEY_CLASSES_ROOT\typelib\{Identificator_TypeLib}\Typelib_Version

The Directory_ column is the foreign key in the first column of the Directory table. In the
registry, it will be written as follows:

HKEY_CLASSES_ROOT\typelib\{Identificator_TypeLib}\ Typelib_Version\HELPDIR

The Feature_ column is the foreign key in the first column of the Feature table. This column
specifies the Feature that must be installed for a TypeLib to be operational.

The Component_ column is the foreign key in the first column of the Component table. This
column identifies the component whose keypath is the typelib to be registered. In the
registry, it is written to the key <default> from the location:

HKEY_CLASSES_ROOT\typelib\{Identificator_TypeLib}\Typelib_version\0\Win32

The <default> registry in the above location has the value: path to the file that is the keypath
of the component.

The Description column represents the description of the Typelib. In the registry, it is written
in the key <default> from the location:

HKEY_CLASSES_ROOT\typelib\{Identificator_TypeLib}\Typelib_version

The Cost column represents the cost associated with registering a Typelib in bytes. This field
must be a positive or null number.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

29Powered by AdvancedInstaller.com

MIME

This table associates a “MIME context type” with a CLSID or extension.

Mime Table

The ContentType column represents the MIME content identifier. It normally appears as a
type/format.

The Extension_ column is the foreign key in the Extension table and associates a MIME with
an extension.

The CLSID column can be a foreign key in the CLSID table or it can be a CLSID that already
exists on the machine.

In the registry it is written at:

HKCR\MIME\Database\Content Type\[MIME_Name]

HKCR\MIME\Database\Content Type\[MIME_Name]\Extension

If MIME is associated with a CLSID, the CLSID will be created at the HKCR\MIME\Database\
Content Type\[MIME_Name] location.

Remarks:

This table is referenced by the standard actions RegisterTypeLibraries and
UnregisterTypeLibraries. The standard RegisterTypeLibraries custom action needs the
typelib language (Language column in the TypeLib table) to be defined correctly,
otherwise, the installer will fail to register the Typelib.

It is possible to register a Typelib without mentioning its version in the table. If you have
a TypeLib with version c.0 (letter.0), you can register it from the table. You can leave the
Version column Null. The installer ignores what is completed in this column. No matter
what you write in this column, the registry is populated with what you need (i.e. the
actual version of Typelib).

If you fill in a description that is different from the one in the ActiveX file in the Typelib
table (in the Description column), the registry will be populated with the description
from the ActiveX file -- so practically the Description column is ignored.

If we do not specify the directory that Typelib belongs to in the Directory_ column, then
the HELPDIR key will have no value. So, this column must be filled. The installer will not
ignore this column.

https://docs.microsoft.com/en-us/windows/win32/msi/mime-table

30Powered by AdvancedInstaller.com

SelfReg

This table provides information for self-registering files.

SelfReg Table

File_ - External key into the first column of the File table indicating the module that needs to
be registered.

Cost - The cost of registering the module in bytes. This must be a non-negative number.

Class

This table provides information for registering class identifiers or COM objects

Class Table

A class will not be registered on the machine if one of the CLSID, Context, Component_ and
Feature_ fields is not present.

The CLSID column in the table will write the following registry key on the machine:

HKCR\CLSID\<GUID>

The ProgId_Default column represents the Program ID associated with the CLSID. This
column is the foreign key in the ProgID table.

The key will be created in the registry:

HKCR\CLSID\<GUID>\ProgID

A <default> key with the name of the ProgID in the ProgID table will be written in the ProgID
key.

Remarks:

A MIME must have an associated extension (Extension_ column) to be written to the
registry.

This table is referenced by the standard registerMIMEInfo and UnregisterMIMEInfo
custom actions.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/selfreg-table
https://docs.microsoft.com/en-us/windows/win32/msi/file-table
https://docs.microsoft.com/en-us/windows/win32/msi/class-table

31Powered by AdvancedInstaller.com

The Description column represents the description associated with the CLSID. In the registry,
the associated key is the following:

HKCR\CLSID\<GUID>\<default>

The <default> key has the value in the Description column.

The Context column will write one of the following keys, depending on the context:

HKCR\CLSID\<GUID>\LocalServer (16-bit)

HKCR\CLSID\<GUID>\LocalServer32 (32-bit)

HKCR\CLSID\<GUID>\InprocServer (16-bit)

HKCR\CLSID\<GUID>\ InprocServer32 (32-bit)

The AppId_ column contains a foreign key from the AppId table. It appears in the registry as
follows:

HKCR\CLSID\<GUID>\APPID

The AppID registry key has the following value: The AppId GUID in the AppId table.

The FileTypeMask column appears in the registry in the following key:

HKCR\FileType\<GUID>

If there are several patterns, they must be delimited by a semicolon (;) , and numeric subkeys
will be generated dynamically: 0,1,2, etc.

The Icon_ column represents the icon associated with the CLSID (which represents a foreign
key in the Icon table, where the icons are registered binary as streams). It appears in the
registry as follows:

HKCR\CLSID\<GUID>\DefaultIcon

The <default> key in the path above will have the following value:

C:\WINDOWS\Installer\[ProductCode]\icon_name_from_Icon_Table, IconIndex

The IconIndex column represents the icon index. It can be NULL, and there must only be
positive numbers.

The Feature column represents the Feature to which the CLSID belongs (foreign key in the
Feature table).

Note: The son of ProgID in the ProgID table will be written in the registry under the
following key:

HKCR\CLSID\<GUID>\VersionIndependentProgID\<default>

32Powered by AdvancedInstaller.com

The Component_ column specifies the component to which the respective class belongs to.
The keypath on this component represents the file in which that class will type.

DefInprocHandler column - this field must be Null if in the Context field we have InprocServer
or InprocServer32 (if it is not Null, we will have validation errors).This field can have the
following values:

Argument column - an argument appears at a CLSID only if the context of that class is
LocalServer or LocalServer32 (otherwise validation errors will occur). In this field, you can
add a defined property in the MSI which will write in the following registry key:

HKCR\CLSID\<GUID>\LocalServer

or

HKCR\CLSID\<GUID>\LocalServer32

Value Description

Non-numeric
value

The installer treats a non-numeric value from the DefInprocHandler
field as a system file that serves as the “process handler” specified by
the registry key: HKCR\CLSID\<GUID>\InprocHandler32

Null The Argument and DefInprocHandler fields can be Null for LocalServer
and LocalServer32 contexts.

1 The default 16-bit process handler (ole2.dll); In the registry, the default
key in HKCR\CLSID\<GUID>\InprocHandler will have the value ole2.dll.

2 The default 32-bit process handler (ole32.dll); The default registry key
in HKCR\CLSID\<GUID>\InprocHandler32 will have the value ole32.dll.

3 It will create both the 16-bit and the 32-bit process handler; The registry
keys are: HKCR\CLSID\<GUID>\InprocHandler and HKCR\
CLSID\<GUID>\InprocHandler32

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

33Powered by AdvancedInstaller.com

Attributes column - if this field is set to 0 or Null, then the registry will be written with the
keypath to the file. If the field is set to 1, then only the name of the file will be written in the
registry.

AppId

To register an AppID in the registry, it is enough for a single field to be filled in, namely the
AppId field (it is the only field in this table that cannot be Null). However, the AppID must be
associated with a CLSID (the AppId column in the Class table must be completed).

The AppID table is used to register various configurations for DCOMs

AppID Table

AppId column - appears in the registry : HKCR\AppID\<GUID_AppID>\ and in the key GUID_
AppID in HKCR\CLSID\<GUID_CLSID>\ (The AppId is associated with the CLSID in the
Class table, the AppId column).

RemoteServerName column - in this field you can add the value of a property. The
RemoteServerName key is written to HKCR\AppID\<GUID_AppID>\.

LocalService column - in the registry, the LocalService key will be written in HKCR\
AppID\<GUID_AppID>\.

Observation: In order for an AppId to be registered in the HKCR\AppID\<GUID_AppID>\
registry key, that AppId must be associated with a CLSID in the Class table (AppId
column).

Remarks:

If in the context of a class we have LocalServer or LocalServer32, then the value of the
default registry in HKCR\CLSID\<GUID>\LocalServer or HKCR\CLSID\<GUID>\
LocalServer32 will be the shortcut to the file that is a keypath on the component (in
which case, the attribute of the respective class is set to 0).

If in the context of a class, we have InprocServer or InprocServer32, then the default
registry value in HKCR\CLSID\<GUID>\InprocServer or HKCR\CLSID\<GUID>\
InprocServer32 will be a long path to the file that is a keypath on the component.

If you write [!Filename] in the Arguments column, then a long path will be written in the
registry.

https://docs.microsoft.com/en-us/windows/win32/msi/appid-table

34Powered by AdvancedInstaller.com

ServiceParameters column - in the registry, the ServiceParameters key will be written in HKCR
\ AppID \ <GUID_AppID> \.

DllSurrogate column - the DllSurrogate key will be written to HKCR\AppID\<GUID_AppID>\ in
the registers.

ActivateAtStorage column - in the registry, the ActivateAtStorage key will be written in HKCR\
AppID\<GUID_AppID>\. If the value of this field is 0, the ActivateAtStorage key will not be
written to the registry. If the value of this field is 1, the ActivateAtStorage key will take the
value Y (“ActivateAtStorage” = “Y”).

RunAsInteractiveUser column - the RunAs key will be written to HKCR\AppID\<GUID_
AppID>\ in the registry. If the value of this field is 0, the RunAs key will not be written to the
registry. If the value of this field is 1, the RunAs key will take the value InteractiveUser
(“RunAs” = “Interactive User”).

Registry

This table contains the registry information required for the applications.

Registry Table

Registry Table Columns:

Registry - the primary key that uniquely identifies the line

Root

• the predefined section of the registry

• Root can have one of the following values:

0 = HKEY_CLASSES_ROOT

1 = HKEY_CURRENT_USER

2 = HKEY_LOCAL_MACHINE

3 = HKEY_USERS

Observation: The AppId table does not know how to register the Default key in HKCR\
AppID\<GUID_AppID>\. If this key has a certain value, you must register it from the
Registry table.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/registry-table

35Powered by AdvancedInstaller.com

Key - the path of the registry to be created

Name

• the name of the register to be created

• If this column is null, the date in the Value column is written in the default register of this
register.

Value - the data contained in the register

Component

• foreign key in the Component table

• this component controls the creation of the register

RemoveRegistry

RemoveRegistry contains information that the application needs to delete during installation.

RemoveRegistry Table

RemoveRegistry Columns:

RemoveRegistry - unique identifier for the line

Component

• the foreign key in the Component table

• this component controls the deletion of the register referred to in the entry

Root - can have one of the following values:

0 = HKEY_CLASSES_ROOT

1 = HKEY_CURRENT_USER

2 = HKEY_LOCAL_MACHINE

3 = HKEY_USERS

https://docs.microsoft.com/en-us/windows/win32/msi/removeregistry-table

36Powered by AdvancedInstaller.com

Key - the path of the registry to be deleted

Name - the name of the registry to be deleted

INI Files
Initialization files are configuration files that contain easily modifiable settings for
applications.

 The INI file format is:

[section 1]

 ; comments on section 1

Var1 = abc

Var2 = 123

 [section 2]

 ; comments on section 2

Var1 = 321

Var2 = xyz

Each section declaration begins with “[“ , and ends with “]”

Parameters are in the form var1 = abc, and are made up of a key (var1), the sign = and a value
(abc).

All lines starting with comments are considered and ignored; Windows Installer ignores all
lines starting with a semicolon (;)

Advanced Installer offers an easy way to add/edit your registry entries from the Registry
Page.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://www.advancedinstaller.com/user-guide/winmobile-registry.html#winmobile-registry
https://www.advancedinstaller.com/user-guide/winmobile-registry.html#winmobile-registry

37Powered by AdvancedInstaller.com

Specific Tables for INI Files

IniFile

This table contains the information needed to set up an INI file.

IniFile Table

IniFile Columns:

IniFile - the primary key for this table

FileName - the name of the .ini file where the information will be written

DirProperty - the directory path that contains the .ini file; this property can be the name of a
directory in the Directory table, a property set by a search system, or any other property that
represents a path.

If this field is left blank, the INI file is created in the directory specified by the WindowsFolder
property.

Section- section of the INI file

Key - key in sections

Value - the value to be written

Action - the type of changes to be made:

• 0 - create or update an INI file

• 1 - creates an entry in an INI file (only if the entry does not already exist)

• 3 - create a new entry or update an entry that already exists with a value, separating it
with:

Component - foreign key in the first column of the Component table, and refers to the
component that controls the installation of values from the INI file

38Powered by AdvancedInstaller.com

RemoveIniFile

This table contains the information that the application needs to delete from an INI file

RemoveIniFile Table

RemoveIniFile Columns:

RemoveIniFile - the primary key for this table

FileName - the name of the .ini file from which the information will be deleted

DirProperty - the directory path that contains the .ini file; this property can be the name of a
directory in the Directory table, or a property set by a search system or any other property
that represents a path.

Section - section of the INI file

Key - key in sections

Value - the value to be deleted (mandatory when the Action field is 4)

Action - the type of changes to be made:

2 - delete the entry from the INI file

4 - delete a value from an entry in the INI file

Component - the foreign key in the first column of the Component table, which refers to the
component that controls the deletion of values from the INI file

Notes: The information in the INI file is deleted when the attached component is selected
for uninstallation.

If the Directory column is empty, the location of the INI file is the one specified by the
WindowsFolder property.

Deleting the last value in a section leads to deleting the respective section. There is no
other solution to erase an entire section than to erase all its values.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/removeinifile-table

39Powered by AdvancedInstaller.com

Shortcuts
Shortcuts are pointers to certain files and can be placed on the desktop or other locations.

Classification of shortcuts
A. Advertised

• When running an advertised shortcut, Windows Installer first checks that all the
components of the respective feature are installed (before running the file).

• The target of the shortcut must be present in the package.

B. Non-advertised

• When running a non-advertised shortcut, Windows Installer does not check if all the
components of the respective feature are installed (before running the file).

• A non-advertised shortcut can launch any file, regardless of whether it is installed by the
current package, already exists on the system or is on another computer.In practice, the
idea is that if the target is present in the package, the shortcut must be advertised.

Advanced Installer makes it easy to add INI files, edit INI files, and offers an advanced
solution for importing multiple INI files into the project.

Caution: The Windows operating system uses a number of INI files to set up various
configurations.

These files are WIN.INI, SYSTEM.INI, PROTOCOL.INI, PROGMAN.INI, CONTROL.INI,
WINFILE.INI, MSMAIL.INI, SHARED.INI and SCHDPLUS.INI.

Some applications add sections and entries to the WIN.INI file, and INI files to the
Windows directory. It is important to take great care when adding/deleting values from
these files.

https://www.advancedinstaller.com/user-guide/ini-files.html
https://www.advancedinstaller.com/user-guide/edit-ini-file-dialog.html
https://www.advancedinstaller.com/user-guide/ini-import-file-advanced.html

40Powered by AdvancedInstaller.com

Shortcuts specific tables

Shortcut Table

This table contains information that the package needs to create shortcuts.

Shortcut Table

Shortcut Table Columns:

Shortcut - the key that uniquely identifies this entry in the database

Directory: - a foreign key in the first column of the Directory table

- this column specifies the directory where the shortcut is created

Name: - the name of the shortcut as it appears on the system

Component:

• a foreign key in the first column of the Component table

• Windows Installer uses the status of the component to determine if the shortcut was
created or deleted

• this component must have a valid key for the shortcut being created; if the target column
contains the name of a feature, the file that the shortcut launches is the “key” file to that
component.

Target:

• the target of the shortcut (the file it calls)

• for an advertised shortcut, this column must be a foreign key entered in the first column
of the Feature table; the file executed by the shortcut is the key file of the component
listed in the Component column. When the shortcut is run, Windows Installer checks if all
the components in that feature are installed before running the file.

• for non-advertised shortcuts, Windows Installer evaluates this field as a formatted
character string. The field must contain references recognized by Windows Installer
(property names to be passed between “brackets” []), which will expand in the path to
files / directories.

Arguments: - a list of arguments needed for the shortcut

Description: - a short description of the respective shortcut

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/shortcut-table

41Powered by AdvancedInstaller.com

Hotkey:

• the hotkey of the respective shortcut

• must be a positive number

• it is recommended not to be set by the packager, to avoid conflicts with the existing
shortcuts on the system

Icon: - a foreign key in the first column of the Icon table

IconIndex - the icon index

- must be a positive number

ShowCmd - how to display the shortcut run executable window

• one of the following values can be used

 1 - ShowNormal

 2 - ShowMaximized

 3 - ShowMinimazed

WkDir:

• the name of a property that contains the path of the shortcut working directory

• preferably the directory where the shortcut target is located

Shortcuts can be easily created with Advanced Installer -- and easily modified.

https://www.advancedinstaller.com/user-guide/winmobile-shortcuts.html#winmobile-shortcuts
https://www.advancedinstaller.com/user-guide/winmobile-shortcut-properties-dialog.html#winmobile-shortcut-properties-dialog

42Powered by AdvancedInstaller.com

Fonts
Fonts are types of recordable files. The Font table contains information for registering fonts
on the system.

The Font table has the following columns:

Font Table

File_ - foreign key from the File table. It is recommended that the registered font is located
in the FontsFolder (C:\Windows\Fonts)

FontTitle (Font name) - it is recommended to leave this column blank for True Type fonts
because the installer can place the correct name from reading the title in the file. The title
entered must be identical to the font name in the file. For fonts that do not have the names
embedded in the file, this column must be completed (eg .fon files)

When installing an MSI, this table creates a registry in HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows NT\CurrentVersion\Fonts - with the font name and the value of the
file.

Font registration in the registry

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/font-table

43Powered by AdvancedInstaller.com

Services
Services are programs that run individually in the background. This can be said of many
programs, such as anti-viruses. The difference is that the services load and run regardless of
whether someone logs into the system or not, unlike a program launched from the StartUp
folder.

You can view Services using the MS Configuration Utility and running the msconfig.exe
executable.

MS Configuration Utility

It offers rather limited information, in the sense that you can only see which services are
turned on and which are not.

Another way to view the service is through services.msc, equivalent to the Control Panel\
Administrative Tools\Services.

Advanced Installer automatically detects and registers fonts, also offering an easy GUI to
control this.

https://www.advancedinstaller.com/user-guide/registration-dialog.html#userguide-sidebar
https://www.advancedinstaller.com/user-guide/registration-dialog.html#userguide-sidebar

44Powered by AdvancedInstaller.com

Services.msc

This method provides much more information about services, such as name, short
description, status, etc.

Service Properties and Settings

Microsoft has assigned a display name for each service. It is the name that appears in the
name column of the Windows Services window.

Attributes:

Service Name: The name of the service

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

45Powered by AdvancedInstaller.com

Process Name/Path to execute: The name of the process that runs when the service is
enabled.

Dependencies: The list of additional services that are required when the service is running.

These services are found “physically” in the machine registry: HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Services.

Services configuration in the Registry

Classification of services

• automatic (start with the operating system)

• manuals (are started by applications/users)

Service status:

• Start

• Stop

• Disable

46Powered by AdvancedInstaller.com

Services-specific tables

ServiceInstall

This table is used to install services:

ServiceInstall Table

ServiceInstall Columns:

Name

• the name of the service, internal to windows

• must have a maximum of 256 characters

Display

• the name that appears to the user

• maximum 256 characters

ServiceInstall - primary key for this table

ServiceType

• the type of service

• accepted values:

0x00000010 - Win32 service, running its own process

0x00000020 - Win32 service, which streamlines a process

0x00000100 - Win32 service, which interacts with the desktop

StartType

• this column specifies when the process starts

• These are the accepted values:

2 - the service starts with the system (automatic)

3 - the service starts on request (manual)

4 - specify a service that cannot be started (disable)

ErrorControl

• this column specifies the action that Windows Installer must take if the service fails

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/serviceinstall-table

47Powered by AdvancedInstaller.com

 to start

• accepted values:

0x00000000 - creates an error log and continues with the service start operation

0x00000001 - creates an error log, displays a message, and continues with the service
start operation

0x00000003 - creates an error log (if possible) and restarts the system

LoadOrderGroup

• this column contains the order in which services will be started within a service group (if
our service is also part of it)

• when left empty, it means that our service is not part of any group

Dependencies

• a list of services that must be started before starting the service from this entry

• services are separated by [~]

StartName

• the service starts with the name specified in this column

• if it has no value then the service uses the LocalSystem account to run

Password - the password of the account with which the service runs

Arguments - this column contains any arguments needed by the service to run

Component

• a foreign key in the Component table

• to create the service attached to this component, it must have the executable that is the
basis of the service as key

Description - a description of the service being created

Virtually all the values populated by these columns correspond to the values in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Service_Name

From this table, you can install certain types of drivers, including Non-Plug & Play. These
drivers are entered in the table similar to the services, except that in the column for the type
of service (ServiceType column) other values are entered as follows:

0x00000001 - driver service

0x00000002 - file system driver service

48Powered by AdvancedInstaller.com

The startup type of the driver also differs from the services. Non-plug & play drivers have 4
boot modes: Automatic, Boot, Demand, System. These startup types can be set from the
table as for services in the StartType column as follows:

• Automatic - set the value to 2

• Boot - value 0

• Demand - value 3

• System - value 1

If you want the driver to be set as disabled, then add the value 0 in the StartType column.

On the machine, you can check the functionality of this type of driver from the
DeviceManager to Non-Plug & Play Drivers (to see Non-Plug & Play Drivers, you must first
access the View\Show hidden devices menu).

For automatic services, you must perform an installation control service (start only for
automatic ones) and a service control for uninstallation (stop and delete, both for automatic
and manual ones).

ServiceControl

This table is used to control the installation and uninstallation of services.

ServiceControl Table

ServiceControl Columns:

ServiceControl - the primary key of this table

Name - the name of the service to be controlled

Event

• the operation to be performed on the service

• when a service is stopped, all services that depend on it are also stopped

• when a service is deleted, Windows Installer stops it

• values accepted at installation only:

1 - the service starts

Attention: With the help of this table, the service/driver is installed but it does not start.
That is why it is mandatory to use it along with the ServiceControl table.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

49Powered by AdvancedInstaller.com

2 - the service stops

8 - the service is deleted

• values accepted only when uninstalling:

16 - the service starts

32 - the service stops

128 - the service is deleted

Arguments

• a list of arguments for starting services

• arguments are separated by the reserved character [~]

Wait

• tells the system to “wait” before an actionLeaving this field blank or entering the value
1 tells Windows Installer to wait a maximum of 30 seconds for the service to follow an
action

• it can be used when you want to allow additional time for critical events to return an error
code

• the value 0 means that Windows Installer waits until SCM (Service Control Manager)
reports that the service is in a standby state

Component - foreign key in the Component table

Note: With the Name column, you can start, stop, or delete services not created by our
package.

With Advanced Installer you can easily install, control and configure Windows native
services from the Services Page. More information about configuring services using
Advanced Installer can also be found here, and in the service control properties.

https://www.advancedinstaller.com/user-guide/services.html#services
https://www.advancedinstaller.com/user-guide/service-config-properties.html#service-config-properties
https://www.advancedinstaller.com/user-guide/service-control-properties.html#service-control-properties

50Powered by AdvancedInstaller.com

ODBC (Open DataBase Connectivity)
As its name implies, an ODBC (Open DataBase Connectivity) connects your application to a
variety of database management systems. Essentially, it allows applications to access a
database (such as Access databases, dBase or Excel, etc.).

Classification of ODBC

• UserDSN: is a “data source” that is specific to a particular user; it is saved on the machine
but is only available to the user who created it.

UserDSN ODBCs are registered in the user-specific registry:

HKEY_CURRENT_USER\ODBC\ODBC.INI\Odbc Data sources

• SystemDSN: unlike UserDSN, it is saved locally but is not specific to a user.

Using a SystemDSN, any user who connects to a computer is allowed to access the data
source.

SystemDSN ODBCs are registered in the machine-specific registry:

HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\Odbc Data sources

• Drivers are libraries that implement functions for ODBC API; each driver is specific to a
database management system.

Drivers practically play the role of a “translator” between an application and a database. The
main utility of these drivers is that they allow us to interact with the databases, without the
need to have a client program (provided by the database manufacturer).

ODBCs are managed through the ODBC Data Source Administrator, which is accessed from
the Control Panel\Administrative Tools\Data Sources (ODBC).

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

51Powered by AdvancedInstaller.com

ODBC Utility

As specified above, ODBC information is stored in the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI

HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI

HKEY_CURRENT_USER\ODBC\ODBC.INI

HKEY_CURRENT_USER\ODBC\ODBCINST.INI,

Keys with ODBCINST.INI contain information about the drivers installed on the machine, and
those with ODBC.INI contain information about the DSN on the machine.

You can also access information about ODBCs in the INI, ODBC.INI, and ODBCINST.INI files
present in C:\WINDOWS.

52Powered by AdvancedInstaller.com

ODBC specific tables

ODBCDataSource

This table contains the data sources related to the application.

ODBCDataSource Table

ODBCDataSource Columns:

DataSource - input identifier

Component - foreign key in the Component table

Description - description of the source data

DriverDescription - the driver associated with the data source

Registration - how the data source is registered:

0 = per machine

1 = per user

ODBCSourceAttribute

This table contains information about the data attributes of the sources.

ODBCSourceAttribute Table

DataSource - datasource identifier, the primary key for the table

Attributes - attribute of the source data, the primary key for the table

Value - the value of the attribute

The ODBCDataSource and ODBCSourceAttribute tables install the DSN on the machine with
all its information (both of these tables must be populated for a DSN to be installed).

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/odbcsourceattribute-table

53Powered by AdvancedInstaller.com

The changes made by these two tables can be found in the

HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\DSName.

ODBCDriver

This table contains the ODBC drivers that belong to the application.

ODBCDriver Table

Driver - the driver identifier, the primary key for the table

Component - the foreign key in the component table

Description - the driver description

File - the dll file that generates the driver, foreign key in the File table

File_Setup - a driver-specific dll setup file, foreign key in the File table

ODBCAttribute

This table contains the ODBC drivers that belong to the application.

ODBCAttribute Table

Driver - the driver identifier, primary key for this table, foreign key in the table

Attributes - the attribute name, the primary key for the table

Value - the value of the attribute

The changes that these two tables make on the machine are the following:

1. HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\Driver_name - the entry written
from the ODBCAttribute table, that contains all the driver description registry.

2. HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers - where a string-
type registry is created with the name of the driver and the value Installed.

3. The C:\Windows\ODBCINST.INI file is altered with the extra driver.

Note: A DSN from the corresponding tables can be placed even if the driver associated
with the DSN is not in the package.

https://docs.microsoft.com/en-us/windows/win32/msi/odbcdriver-table
https://docs.microsoft.com/en-us/windows/win32/msi/odbcdriver-table

54Powered by AdvancedInstaller.com

To check a driver (if it is installed correctly), you can go to the Control Panel\
Administrative Tools\Data Source (ODBC).

For further testing, you can add a DSN (user or system) by choosing the respective driver to
set the DSN.

ODBCTranslator

This table contains ODBC translators that belong to the application.

ODBCTranslator Table

Translator - the name of the translator, the primary key for the table

Component - the foreign key in the component table

Description - the description of the translator

File - the dll file, the foreign key in the File table

File_Setup - the dll setup file, the foreign key in the File table

The ODBCTranslator table writes in the following registry:

1. HKLM\SOFTWARE\ODBC\ODBCINST.INI

2. HKLM\SOFTWARE\ODBC\ODBCINST.INI\ODBC Translators

You can find a translator in the DSN (Administrative Tools\Data Sources) dialog where you
want to load the translator. The display mode of a translator differs depending on the driver.

Note: An ODBCDriver cannot be set from the corresponding tables unless the required files
(DriverDll and SetupDll) are in the package.

Easily manage your ODBC connections with Advanced Installer by using the ODBC Page.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/odbctranslator-table
https://www.advancedinstaller.com/user-guide/odbc.html#odbc

55Powered by AdvancedInstaller.com

System variables
System variables are strings that replace longer data references.

They already exist defined on the system and you can view them using the “set” command in
CMD.

Set Command

You can also access them from System Properties\Advanced\Environment Variables.

Environment Variables View

56Powered by AdvancedInstaller.com

Classification:

User variables - found in: HKEY_CURRENT_USER\Environment

System variables - found in:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\
Environment

The system variables can be used directly in the package, using the reference type
[%ENVVAR].

You can also define new variables to be used by the runtime package.

Tables specific to system variables

Environment

Environment Table

Environment Table columns:

Name: The name of the system variable: the system variable is written or deleted depending
on the symbols that appear in front of the name -- there is no specific order for these
symbols.

Prefix Description

= Creates the variable if it does not exist, and sets it to the given value.
If the variable already exists, just set it to the given value.

+ Creates the variable if it does not exist, and sets it to the given value. If
it already exists, it has no effect on the value of the variable.

- Deletes the variable when the component is uninstalled. This
symbol can be combined with any prefix.

! Deletes the variable during the component installation. Windows
Installer deletes a variable during installation if the name and
value of the variable match the entries in the Environment table.
If you want to delete a system variable regardless of its value, it
is recommended to use the syntax “!”, and leave the Value
column blank.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/environment-table

57Powered by AdvancedInstaller.com

Value:

• this column contains the value to be set as a formatted string;

• if this column is empty, the variable is deleted; if the column is empty and the “-” symbol
appears in the name column, the variable is deleted when the component is deleted.

• to add a new value to an already existing one, the value in this column must end with the
prefix “~” and the separation character “;”. ex: [~]; Value

• to add a new value to an already existing one, the value in this column must begin with
the suffix “~”, accompanied by the separate character “;” ex: Value; [~]

• if the string [~] is not present in this field, the value in this column represents the entire
value to be set or deleted.

• each row contains only one value; values such as Value; Value [~] are not
recommended due to unpredictability

• if the field name has the character “+” as a prefix, then you must use the string [~] in
the value column; the two must be used together

Environment: - the key that uniquely identifies the record

Component: - a foreign key from the first column of the Component table; this column
controls the installation of the system variable through the component

The environment variables can be easily managed in Advanced Installer in the
Environment Variables Page.

Prefix Description

* This prefix is used by Microsoft Windows NT / 2000 to indicate
that the name refers to a system variable (not a user). If no
asterisk is present, Windows Installer writes the variable as a
user variable. Microsoft Windows 95/98 ignores the asterisk and
adds the variable to the autoexec.bat file. This symbol can be
combined with any other prefix. It is recommended that
packages installed “per-machine”, write only system variables
(not user), using the * symbol in the name.

=- The variable is set at installation and deleted at uninstall. This is
normal behavior.

!- Deletes variables when installing or uninstalling.

=+,!+,!= These prefixes are not valid.

https://www.advancedinstaller.com/user-guide/environment-variables.html#environment-variables

58Powered by AdvancedInstaller.com

Properties

Properties are global variables that Windows Installer uses during installation, with

values defined either in the package or by the user.

Properties Table

Property classification
Private properties:

• used internally by Windows Installer and defined directly in the package

• their name includes lowercase letters

• the value of these properties cannot be overwritten at installation by using commands

Public properties:

• defined inside the package, they can be changed by commands, applying a transform, or
through a graphical interface.

• their names must not contain lower case letters

• usually, they are set during installation (eg INSTALLEVEL)

Restricted public properties:

• for security reasons, the author of a package may restrict the user from modifying public
properties

• if all of the following conditions are true, a user who is not a system administrator may
overwrite an approved list of restricted public properties

• The system is not Windows 2000.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/property-table

59Powered by AdvancedInstaller.com

• The user is not a system administrator.

• The package is installed with elevated privileges.

There is a predefined list of restricted properties and, listed below, are the most important:

ALLUSERS

INSTALLLEVEL

LIMITUI

REBOOT

REINSTALL

REINSTALLMODE

A software packager can extend this list (by adding these properties as the value in this
property) to include other public properties with the “SecureCustomProperties” property.

These five properties are required in a package:

1. ProductCode - a unique identifier of the GUID package

2. ProductLanguage - the language that the installer uses in the LANGID graphical interface

3. Manufacturer - the name of the package manufacturer

4. ProductVersion - the application version in string format (form: major.minor.build =
255.255.65535)

5. ProductName - the name of the application to be installed (maximum 63 characters)

The required properties must be listed in the Property tables. Properties that have a null value
are not listed in this table. Instead, they can be set directly through the program, custom
actions, or the command line. You can also use Properties in conditional statements.

https://docs.microsoft.com/en-us/windows/win32/msi/allusers?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/installlevel?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/limitui?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/limitui?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/reinstall?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/reinstallmode?redirectedfrom=MSDN

60Powered by AdvancedInstaller.com

The Most Common Properties used in Packages

ALLUSERS

The ALLUSERS property determines where the package configurations are stored.

If the ALLUSERS property is not set, Windows Installer performs a per-user installation.

ARPNOREMOVE

If this property is set, the remove button will not appear in Add\Remove Programs. Its default
value is 0.

ARPNOREPAIR

When this property is set, the repair button in Add\Remove Program is not displayed. The
default value is 0.

ARPNOMODIFY

By setting this property, the change button in Add\Remove Program is not displayed. The
default value is 0.

ARPSYSTEMCOMPONENT

When this property is set, the package is not displayed in Add\Remove Program.The default
value is 0.

INSTALLEVEL

The INSTALLEVEL property sets the base level for all features whether they are installed or
not; a feature is installed only if the value entered in the LEVEL field (in the Feature table) is
less than or equal to the INSTALLEVEL property value.

If no value is specified, then it has the default value 1, and if the value in the LEVEL field is 0,
that feature is neither installed nor displayed in the graphical interface.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

61Powered by AdvancedInstaller.com

LIMITUI

Setting this property leads to a very limited (basic) graphical interface. The default value is 0.

REBOOT

Setting this property suppresses the system restart request.

REBOOT value Description

Force The UI always prompts the user with an option to reboot at the end of
the installation. If there is no user interface, the system automatically
reboots at the end of the installation.

Suppress Suppress prompts for a reboot at the end of the installation. The
installer still prompts the user with an option to reboot during the
installation whenever it encounters the ForceReboot action. If there is
no user interface, the system automatically reboots at each
ForceReboot. Reboots at the end of the installation are suppressed
(for example the ones caused by an attempt to install a file in use).

ReallySuppress Suppress all reboots and reboot prompts initiated by ForceReboot
during the installation. Suppress all reboots and reboot prompts at
the end of the installation. It suppresses both the reboot prompt and
the reboot itself. For example: It suppresses reboots caused by an
attempt to install a file in use at the end of the installation.

62Powered by AdvancedInstaller.com

ROOTDRIVE

Setting this property specifies the default drive of the application installation location. The
value of this property must end with “\”, for example “C:\”.

Running custom code from the package

Custom Actions
Windows Installer comes with a number of standard actions. These actions are basically
pieces of code included by default in the operating system to handle operations like installing
files, registry and so on. But in some cases, these are not enough. When you need more
control, (e.g. when launching an executable during installation on the machine, calling a
special function from a dll, etc), you can resort to .Dll, .js, .vbs, .exe, and .ps1 files as sources
of various custom actions.

In these scenarios, it is most common to use VBS files, run by the Windows Scripting Host
service, which is available with any Windows version.

You can add these types of files as binaries included directly in the package, and pass the
source code of VBS directly in a custom action.

Once you have chosen the type of file and the reference method, you must schedule the
custom action in a running sequence (you cannot run a file if it has not been copied to the
machine yet).

Custom Actions sequence scheduling

1. InstallUISequence - via the graphical user interface

2. InstallExecuteSequence - via the graphical interface or silently

3. AdminExecuteSequence - when performing an administrative installation

4. AdvExecuteSequence - when installing or uninstalling advertised components

All the standard and custom actions from an MSI package are grouped in several sequences.
Each of them must be scheduled as part of at least one sequence.

This is mostly done automatically by the MSI authoring tool you use, but when you add a
custom action in the package, you will have to manually choose the sequence where you will
schedule it, so, the following information is essential knowledge for any packager.

The above Microsoft docs links and the one below from the Advanced Installer team provide
detailed explanations on the purpose and characteristics of each sequence.

More information about Windows Installer Properties and how you can edit them with
Advanced Installer can be found here.

More details can be found here.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/installuisequence-table
https://docs.microsoft.com/en-us/windows/win32/msi/installexecutesequence-table
https://docs.microsoft.com/en-us/windows/win32/msi/adminexecutesequence-table
https://docs.microsoft.com/en-us/windows/win32/msi/advtexecutesequence-table
https://www.advancedinstaller.com/user-guide/properties.html#properties
https://www.advancedinstaller.com/user-guide/custom-actions.html#custom-actions

63Powered by AdvancedInstaller.com

Custom Actions running modes

Depending on the sequence you choose when scheduling a custom action, you will also be
able to configure additional properties for each custom action.

One of the most important properties of a custom action is the user account under which the
Windows Installer service executes the custom action code. Any MSI package can schedule
a custom action that runs under the current user account performing the installation or under
the SYSTEM account from that machine.

This in turn, affects the permissions the custom actions have. Usually, those running under
the current user have limited permissions (and we use them just to control the installation
logic, but not to modify machine resources) and those running under the SYSTEM account
can change any resource from the machine, like files or registry.

Immediate Execution

 The action :

• is executed under the account of the user who started the action

• can be placed anywhere in the sequences list

• has the advantage that it uses the user’s account, and you can directly access its specific
settings

• the disadvantage is that the user’s account often has limited rights which can block
some actions

• It can read and write MSI properties

Deferred Execution / System Context

The action:

• is executed under the system account

• can be placed in the InstallExecute sequence list, only between InstallInitialize and
InstallFinalize

• has the disadvantage that if you try to write in the user’s profile, it will not succeed
because it will be written in the “profile” of the system

Custom action properties can be set in just a few mouse clicks in Advanced Installer.

ROOTDRIVE

Setting this property specifies the default drive of the application installation location. The
value of this property must end with “\”, for example “C:\”.

Running custom code from the package

Custom Actions
Windows Installer comes with a number of standard actions. These actions are basically
pieces of code included by default in the operating system to handle operations like installing
files, registry and so on. But in some cases, these are not enough. When you need more
control, (e.g. when launching an executable during installation on the machine, calling a
special function from a dll, etc), you can resort to .Dll, .js, .vbs, .exe, and .ps1 files as sources
of various custom actions.

In these scenarios, it is most common to use VBS files, run by the Windows Scripting Host
service, which is available with any Windows version.

You can add these types of files as binaries included directly in the package, and pass the
source code of VBS directly in a custom action.

Once you have chosen the type of file and the reference method, you must schedule the
custom action in a running sequence (you cannot run a file if it has not been copied to the
machine yet).

Custom Actions sequence scheduling

1. InstallUISequence - via the graphical user interface

2. InstallExecuteSequence - via the graphical interface or silently

3. AdminExecuteSequence - when performing an administrative installation

4. AdvExecuteSequence - when installing or uninstalling advertised components

All the standard and custom actions from an MSI package are grouped in several sequences.
Each of them must be scheduled as part of at least one sequence.

This is mostly done automatically by the MSI authoring tool you use, but when you add a
custom action in the package, you will have to manually choose the sequence where you will
schedule it, so, the following information is essential knowledge for any packager.

The above Microsoft docs links and the one below from the Advanced Installer team provide
detailed explanations on the purpose and characteristics of each sequence.

More information about Windows Installer Properties and how you can edit them with
Advanced Installer can be found here.

More details can be found here.

https://docs.microsoft.com/en-us/windows/win32/msi/installinitialize-action
https://docs.microsoft.com/en-us/windows/win32/msi/installfinalize-action
https://www.advancedinstaller.com/user-guide/custom-action-properties.html#custom-action-properties
https://docs.microsoft.com/en-us/windows/win32/msi/installuisequence-table
https://docs.microsoft.com/en-us/windows/win32/msi/installexecutesequence-table
https://docs.microsoft.com/en-us/windows/win32/msi/adminexecutesequence-table
https://docs.microsoft.com/en-us/windows/win32/msi/advtexecutesequence-table
https://www.advancedinstaller.com/user-guide/properties.html#properties
https://www.advancedinstaller.com/user-guide/custom-actions.html#custom-actions

64Powered by AdvancedInstaller.com

• It cannot read and write MSI properties. CustomActionData property management is the
only way to pass parameters to this type of custom actions.

Deferred Execution / User Context

The action:

• is executed under the account of the user who started the action

• can be placed in InstallExecute sequence, between InstallInitialize and InstallFinalize

• has the advantage that compared to Immediate Execution, it can be sequenced more
correctly

• It cannot read and write MSI properties. CustomActionData property management is the
only way to pass parameters to this type of custom actions.

Rollback

This type of action is performed when the installation fails before it finishes.The rollback is
executed under the account of the user who started the installation and it can be placed
between InstallFinalize and InstallExecuteSequence, but it cannot run asynchronously.

Commit

This Commit action:

• is performed when the installation is successful.

• it is executed under the account of the user who started the action

• can be used to clean the temporary resources left after a successful installation

Custom Actions Processing

1. Synchronous

2. Synchronous, ignore exit code

3. Asynch, Wait at end of sequence

4. Asynch, No Wait
Custom Actions processing can be executed synchronously and asynchronously.

Advanced Installer offers a quick and easy way to add your custom acti ons, and it
includes popular built-in solutions. More details about this can be found here.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/installinitialize-action
https://docs.microsoft.com/en-us/windows/win32/msi/installfinalize-action
https://www.advancedinstaller.com/user-guide/custom-actions-page.html#custom-actions-page

65Powered by AdvancedInstaller.com

The synchronous Custom Actions are executed in the same thread in the order of the
sequence. The following ones in the sequence must wait for the completion of the previous
one.

The asynchronous Custom Actions are those that open a new thread and run in parallel with
the main thread.

The two options check whether the installation has been completed successfully or not.

In a package, custom actions are performed during all three phases (installation,
uninstallation, repair). To avoid this, a specific condition must be set:

1. Installation Only: NOT Installed

2. Repair Only: REINSTALL

3. Uninstall Only: Installed AND REMOVE ~ = ”ALL”

To combine these, use the “OR” operator. Other properties such as “AND” may be included in
the conditions.

System Search
Sometimes, during the installation of an MSI, it is necessary to perform various checks on
the system to determine a few things: if an application is installed on the machine, or if we
need a path to the prerequisite in case we have to change a configuration, etc.

You can use a feature called System Search to perform these checks.

Windows Installer can search for a file, directory, registry, or component while installing a
package, this is done through an AppSearch action.

The AppSearch action searches the system for the signature of a file that is specified in the
AppSearch table. If the AppSearch action finds the file or directory on the system, it sets an
appropriate property with the location of the file or directory (also specified in the AppSearch
table).

When searching for a file, the signature of the file must also be specified in the Signature
table. If the file Signature is listed in the AppSearch table but not listed in the Signature table,
then it searches for a directory, registry, or INI.

The tables that populate when creating a system search (depending on the type of system
search that you want) are: AppSearch, CompLocator (for components), DrLocator (for
directories), IniLocator (for INI files), RegLocator (for registry), Signature (for files).

Some frequently asked questions about Custom Actions can be found here.

Easily add searches with Advanced Installer. Here is how.

https://docs.microsoft.com/en-us/windows/win32/msi/appsearch-action
https://www.advancedinstaller.com/user-guide/faq-ca.html#faq-ca
https://www.advancedinstaller.com/user-guide/search.html#search

66Powered by AdvancedInstaller.com

Upgrades
Applications get updated to correct various problems, change certain configurations or
improve functionality.

For MSI packages, this can be done through patches and upgrades.

According to the Windows Installer Software Development Kit (SDK), there are three ways to
update applications that are based on the Windows Installer technology, namely:

1. Patching,

2. Minor upgrades

3. Major upgrades.

Patching (using msps) is like installing an add-on to an already installed application to
update.

Upgrading (also referred to as a small update or minor update) is the process of re-installing
a new improved version of an MSI, over an already installed version of the MSI.

Major upgrades are represented by improved versions of the package installed normally
(they also take into account the uninstallation of older versions already installed on the
machine).

Patching
A patch (.msp) is a file used to improve an MSI (if you can look at it like this). Unlike an MSI, a
patch contains only the information needed to update an installed version of an application.
It includes either an entire file (or more) or just bits of it to update a file(s).

One of the advantages of patches is that they can be uninstalled, bringing the application
back to its initial stage. This way you avoid having to uninstall and reinstall the application (a
feature available in Windows Installer 3.0 and higher versions).

To uninstall a patch and revert the application back to its initial stage, use the following
command line:

Msiexec /package {GUID_OF_PRODUCT} /uninstall {GUID_OF_PATCH} /qb

Where:

• {GUID_OF_PRODUCT} is the Product Code of the main MSI

• {GUID_OF_PATCH} is the Revision number field in the msp file Properties, Details tab.

Setting up Upgrades is super simple with Advanced Installer.

Check out the Creating Patches article on our Advanced Installer User guide.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://www.advancedinstaller.com/user-guide/upgrades.html#upgrades
https://www.advancedinstaller.com/user-guide/patches.html
https://www.advancedinstaller.com/user-guide/introduction.html

67Powered by AdvancedInstaller.com

Patch Revision Number

By using a utility (such as Advanced Installer or other), you can create a patch from two
different MSIs:

• one MSI containing the old versions of the files

• another MSI created by us (based on the old one) to replace the old files with the new
ones

A more in-depth article regarding Windows Installer patches can be found here.

Upgrades
Applications get updated to correct various problems, change certain configurations or
improve functionality.

For MSI packages, this can be done through patches and upgrades.

According to the Windows Installer Software Development Kit (SDK), there are three ways to
update applications that are based on the Windows Installer technology, namely:

1. Patching,

2. Minor upgrades

3. Major upgrades.

Patching (using msps) is like installing an add-on to an already installed application to
update.

Upgrading (also referred to as a small update or minor update) is the process of re-installing
a new improved version of an MSI, over an already installed version of the MSI.

Major upgrades are represented by improved versions of the package installed normally
(they also take into account the uninstallation of older versions already installed on the
machine).

Patching
A patch (.msp) is a file used to improve an MSI (if you can look at it like this). Unlike an MSI, a
patch contains only the information needed to update an installed version of an application.
It includes either an entire file (or more) or just bits of it to update a file(s).

One of the advantages of patches is that they can be uninstalled, bringing the application
back to its initial stage. This way you avoid having to uninstall and reinstall the application (a
feature available in Windows Installer 3.0 and higher versions).

To uninstall a patch and revert the application back to its initial stage, use the following
command line:

Msiexec /package {GUID_OF_PRODUCT} /uninstall {GUID_OF_PATCH} /qb

Where:

• {GUID_OF_PRODUCT} is the Product Code of the main MSI

• {GUID_OF_PATCH} is the Revision number field in the msp file Properties, Details tab.

Setting up Upgrades is super simple with Advanced Installer.

Check out the Creating Patches article on our Advanced Installer User guide.

https://www.advancedinstaller.com/user-guide/understanding-patches.html#understanding-patches
https://www.advancedinstaller.com/user-guide/upgrades.html#upgrades
https://www.advancedinstaller.com/user-guide/patches.html
https://www.advancedinstaller.com/user-guide/introduction.html

68Powered by AdvancedInstaller.com

Upgrading
Upgrading can be classified as follows:

Applying a small update

A small update can be applied to an application either by fully reinstalling the application or
only partially by using the command line.

Fully:

msiexec / fvomus [path to updated .msi file] or msiexec / I [path to
updated msi file] REINSTALL = ALL REINSTALLMODE = vomus

Partially:

You need to find out which features and components are modified by this small update.

msiexec / I [path to updated .msi file] REINSTALL = [Feature list]
REINSTALLMODE = vomus

Applying a major upgrade

A major upgrade involves installing the improved package. Major upgrades have a different
product code than the original package and they must be treated as a new product, so it
installs like any other package.

msiexec / i [path to updated msi file]

Type of
update

Product-
code

ProductVer-
sion

Description

Small
Update No change No change

An update to one or two files that is too small to
warrant changing the ProductVersion.
The package code in the Revision Number
Summary Property changes. It can be shipped as a
full installation package or as a
patch package.

Minor
Upgrade No change Changed

A small update that makes significant enough
changes to alter the ProductVersion property. It can
be shipped as a full installation package or as a
patch package.

Major
Upgrades Changed Changed

A comprehensive update of the product
needing a change in the ProductCode property. It is
shipped as a patch package or as a full
product installation package.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/small-updates?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/small-updates?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/productversion?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/revision-number-summary?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/revision-number-summary?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/minor-upgrades?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/minor-upgrades?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/productversion?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/patch-packages?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/major-upgrades?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/major-upgrades?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/productcode?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/patch-packages?redirectedfrom=MSDN

69Powered by AdvancedInstaller.com

De-hardcoding and Variabilization
Often in our package, we have to reference directories, as well as existing or non-existing
files in the package. Some references differ depending on the user logged on to the machine
(for example the %appdata% folder). To sort this out, make the package more independent
from fixed values, by using dynamic values. The solution is made with the help of
dehardcoding and variability.

De-hardcoding
Hardcoding refers to references to various paths whether they belong to our application or
not. It is solved by referring to the existing properties in our package.

References to a Directory:

• [DirectoryNameInternal]

• [$ComponentName]

File references:

• long path [#FileName]

• shortcut [! InternalNameFile]

References to system variables: [%SystemVariableName]Property References:
[InternalNameProperty]

Variabilization
Variabilization refers to values that can be changed by the person installing the package,
even at the time of installation. In such cases, public properties are defined with the initial
values at the time of creating the package. They can be subsequently modified by the
administrator, doing an installation from the command line.

As an example, let’s assume the property LICENSEKEY exists in the MSI. During installation,
the administrator can install the package with the following command:

Msiexec /i [path to msi.msi] LICENSEKEY=11111-11111-11111 /qb

70Powered by AdvancedInstaller.com

Vendor MSI

Definition
Since many software manufacturers use Windows Installer, a large number of applications
(in addition to the well-known setup.exe) come with MSI files.

Seller Vendor Customization
It wouldn’t make sense to recreate an MSI if an application already comes with an MSI file.
Instead, it is best to customize it with the help of .mst files, and adjust it to be installed as the
user wants.

The possibility for customization does not mean that this MSI file can be 100% modified.
Consider any changes with great care to avoid altering the logical structure of the MSI.
Nobody knows how an MSI was created and the final result shouldn’t be different from what
it was initially.

There are several options to find out how to configure the MSI to be installed as needed:

1. creating an installation log, and using it to identify the parameters sent to the MSI

2. using the various tools offered by Advanced Installer or Wise, to create the mst based on
the installation simulations

3. or you can read/investigate the dialogs in MSI to possibly identify what is required for
each installation window.

MSI vendor do’s and don’ts:

• You can add and delete properties

• You can add and delete files, registry, services, shortcuts (paying close attention to not
damage the logic of the MSI)

• You can include Custom Actions, but deleting CAs is not recommended (at most they can
be commented)

• You should not modify ProductVersion, ProductCode, UpgradeCode from an MSI
(because they are needed for subsequent upgrades)

Most software vendors deliver the MSI file by default, but they can also deliver this file hidden
in the setup. In addition, they can also deliver msp files.

Depending on the delivery option, there are several vendor approaches to MSIs.

More about packaging options can be found here.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://www.advancedinstaller.com/user-guide/alternative-adminstudio-wise.html#userguide-sidebar

71Powered by AdvancedInstaller.com

Direct vendor MSI
When a vendor directly provides an MSI, we customize it with a transform file (mst). At the
end, you need to perform some checks to make sure the installation with the MST behaves
the same as the original MSI.

Vendor MSI hidden in setup
Most manufacturers hide the MSI in the setup. To detect if there is an MSI vendor behind a
setup, monitor the Task Manager during installation. If the msiexec.exe process appears in
the list, it means that we are dealing with an MSI vendor.

To find where the setup copies of the MSI file are, we can use Procmon. Usually, Windows
Installer copies the files needed to install the setup (i.e. the MSI itself with its files and
possibly some configuration files) in the temp directory of the current user.

Once the MSI file is recovered, a check is performed to see if the installation is identical to
the one made with the setup.

Vendor MSI with patch
In addition to the MSI file, the software manufacturer may deliver a patch--an MSP file that
fixes various MSI bugs.

The patch only contains the “improvements” to the MSI. It cannot be installed alone on the
machine. It needs to find the MSI to modify.

Modify an MSI vendor, from cab outside to cab inside, etc.
There are situations that require the transformation of an “MSI with cab outside” into an “MSI
with cab inside”. There are two ways to do this:

• with a script

• by converting MSI to WSI

Windows Installer has a tool for modifying MSIs called MAKECAB.EXE. With its help and a
script, you can transform an MSI from cab outside to cab inside, and vice versa.

To check the install behavior between the original MSI and the MST you can use one of the
tools mentioned in section 5.8 of this book.

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/makecab
https://github.com/microsoft/Windows-classic-samples/blob/master/Samples/Win7Samples/sysmgmt/msi/scripts/WiMakCab.vbs

72Powered by AdvancedInstaller.com

There are just a few steps you need to take:

1. Perform an admin install of MSI: msiexec /a Name.msi TARGETDIR=”c:\temp\
mymsi\”

2. Perform the transformation using the command line: cscript [WiMakeCab ...] / c / u
/ s / e [Name.msi], right from the directory where the admin install was made (”c:\
temp\mymsi\”), with the help of the exe and vbs files

The argument (s) is the one that turns the cable outside. Following the admin install, the MSI
files are expanded. If the command is run with / e --then it results in an MSI with cab inside, if
you use a command without / e -- then you will get an MSI with cab outside.

Msiexec.exe commands
The executable behind the Windows Installer is msiexec.exe. This file is located in C:\
WINDOWS\system32 and can be used to control or repair the installation and uninstallation
of packages in the command line.

Installing a package
The argument for installing a package is Argument: /i

Command: msiexec /i Package.msi

Repairing a package
Argument: /f - is the argument for repairing a package.

Command: msiexec /f {ProductCode}

Uninstalling a package
Argument: /x - is the argument for uninstalling a package.

Command: msiexec /x {ProductCode}

Administrative Installation
Argument: /a - is the argument for performing an administration installation of a package.

Command: msiexec /a Package.msi TARGETDIR=”C:\temp\yourdesireddrirectory”

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

73Powered by AdvancedInstaller.com

Creating logs
Argument: /l - is the argument for making a log.

Command:

• msiexec /i Package.msi /l LogFile.log - log on installation

• msiexec /f {ProductCode} /l LogFile.log - log on repair

• msiexec /x {ProductCode} /l LogFile.log - log when uninstalling

Applying a patch over a MSI
Argument: /p - is the argument for installing a patch over an MSI.

Command: msiexec /p Patch.msp - the command to install an MSP

The command can also be parsed together with an MSI:

Command: msiexec /i Package.MSI /p Patch.msp

Installation with MST
Command: msiexec /I Package.msi TRANSFORMS = Transform.mst

OBS: Arguments are commutative, with the specification that after each argument, the
corresponding information is passed (after an /i an MSI should be passed, after an /l a log
file (.log) should be passed).

Check out more options and documentation regarding msiexec commands here.

https://www.advancedinstaller.com/user-guide/msiexec.html#msiexec

74Powered by AdvancedInstaller.com

Active-Setup Mechanism
Self healing is one of the main features of Microsoft’s Windows Installer technology. Self
healing leverages the Windows Installer database to allow for a full or partial reinstallation of
a product if the installation gets broken or corrupt.

Windows Installer addresses this feature through Advertised shortcuts. When the application
is installed, the self-healing feature is automatically activated if the application is launched
through the advertised shortcuts. Since the shortcuts point to a file from a feature, only the
components in this feature can be repaired. Therefore, if one of these components is
missing, Windows Installer will trigger an auto-repair for the entire feature.

If no Advertised shortcuts (or no shortcuts at all) are present in the package, but user
information and/or actions must be performed for each user, then you should use the Active-
Setup mechanism.

An exception to this rule appears if your package contains File Type Associations (FTA). An
FTA is basically a file extension you can associate with an application from your package so
that the selected program can perform certain operations (verbs) on the files with the
specified extension. First, a ProgID is defined, which can have any number of extensions
associated and each extension can define any number of verbs.

When FTAs are present in an MSI package, it doesn’t matter if you have an advertised
shortcut or not, the moment the user will do the action for which the FTA exists, the self-
healing mechanism will start automatically.

Windows Active Setup is a mechanism for executing commands once per user during login.
When using active setup, the following keys are compared:

HKLM\Software\Microsoft\Active Setup\Installed Components\[ProductCode]

and

HKCU\Software\Microsoft\Active Setup\Installed Components\[ProductCode]

If the HKCU registry entries don’t exist, or the version number of HKCU is less than the one
from HKLM, then the specified application is executed for the current user. So, when each
new user logs on, the operating system compares Active Setup keys between HKLM and
HKCU, and runs the command line in StubPath if the HKCU entry is missing or if the version
in HKCU is less than the one for HKLM.

Advanced Installer offers a quick and easy way to view, edit and create File Associations
with a few clicks. Check out this tutorial.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://www.advancedinstaller.com/user-guide/file-associations.html#file-associations

75Powered by AdvancedInstaller.com

To implement Active Setup, please create the following registry hive:

HKLM\Software\Microsoft\Active Setup\Installed Components\[ProductCode]

When a user logs on for the first time after an Active Setup has been configured in HKLM, the
operating system compares Active Setup keys between HKLM and HKCU, and runs the
executable if the HKCU entry is missing or the version in HKCU is lower than the one for
HKLM. To update the ActiveSetup executable, just install a new version, and increment the
Version registry key (second registry entry above). After performing these steps, the next
time the user logs on, the active setup will run again for that user.

Active Setup is a solution for applications that require installation of components such as
files or registry keys on a per-user basis, but don’t have any advertised entry points or other
triggers to initiate the installation process.

How to Create Basic MSIs
Advanced Installer
Advanced Installer is a powerful authoring tool designed to help software packagers and
software developers.

It is GUI-based, and assists you to complete complex tasks in just a few clicks. As software
developers/packagers, you can focus on what you do best, without having to worry much
about the MSI structure, or specific rules, etc.

What I like most about Advanced Installer technology is that it comes embedded with best
industry practices in accordance with ICE Validation Standards and best behaviour gathered
from the tens of thousands of software engineers that have used it in the last 16 years.

It performs validation work automatically in the background for you to release top quality
packages.

How to Create an Advanced Installer Project
Creating a project is simple, and here’s a quick walkthrough of the process. Let’s say you
want to create a package to install a simple text file (i.e. a story you wrote).

1. Choose an already existing text file on your local disk or create one.

2. Name the file story.txt,

3. Open it in your favorite text editor,

4. Type a couple of lines to give it some content.
Then, launch Advanced Installer. You will be presented with a dialog window where you will
be able to choose the type of project you want to create.

Want to know how to implement the self-healing mechanism in your package? Check out
this guide.

https://www.advancedinstaller.com/user-guide/qa-self-healing.html#qa-self-healing

76Powered by AdvancedInstaller.com

Advanced Installer Project Type Window

5. Select the “Simple” type.

6. Uncheck the “Use wizard...” option.

7. Press the [Create Project] button.

8. The new project will be created and you will be able to edit it.

Save the project by using the [Save] toolbar button and choose the file name and the
destination folder.

When using Advanced Installer, avoid creating a project, copying it, and then using the copy
as a base for a new project. Otherwise you will have a duplicate ProductCode and
UpgradeCode.

Review this article on Product Identification to see why this is not the way to go -- you can
find the reasons in the “Copying your project files” section.

Note: This folder will also be where your MSI package will be created. Give it an
appropriate name, like story.aip, for example.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://www.advancedinstaller.com/user-guide/product-identification.html#copying

77Powered by AdvancedInstaller.com

How to Add Files and Folders
The most important step when creating an MSI package is adding a file or folder.

Switch to the “Files and Folders” page by selecting it in the left-side panel. The folders that
interest you most are “Application Folder” and “Application Shortcut Folder”.

In the Application Folder, you can add the files and folders used by your application (this
folder represents the installation folder). In the Application Shortcut Folder, you can add
shortcuts to your application pointing to a help file or to a URL. This folder represents a folder
in the “Start > All Programs” menu of the Windows taskbar.

Next, click on the [Add Files...] toolbar button, browse to find your project’s folder and select
the story.txt file you previously created.

Files and Folders Page

How to Add Registry
You can add registry keys and values to the install package in the Registry page. The keys
and values you can add to any of the hives are listed in the left pane:

HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE, HKEY_USERS

To create a new registry key, use the [New Key] toolbar button, the “New Key” tree/list context
menu item, or press the Insert key while the “Hive” panel is focused. The new key will be
added under the selected key in the left pane.

When it comes to creating new registry values, you can use the [New Value] toolbar button,
the “New Value...” tree/list context menu item or press the Insert key while the “Values” panel
is focused. The Registry Value Dialog will pop up, where you can set the value’s name, its type
and content.

To add registry keys, use the [Add Key] toolbar button, the “Add Key...” tree/list context menu
item or press the * key while the “Values” panel is focused. You will be prompted to choose a
registry key from your computer’s registry using the Registry Key Picker Dialog. All of the
selected key’s subkeys and values will be added.

Note: You can read more about these folders in the Install Parameters page.

https://www.advancedinstaller.com/user-guide/quick-filter.html
https://www.advancedinstaller.com/user-guide/winmobile-registry-value-dialog.html
https://www.advancedinstaller.com/user-guide/registry-key-picker.html
https://www.advancedinstaller.com/user-guide/install-parameters.html

78Powered by AdvancedInstaller.com

To add registry values, use the [Add Values] toolbar button, the “Add Values...” tree/list
context menu item or press the + key while the “Values” panel is focused. You will be
prompted to choose registry values from your computer’s registry using the Registry Picker
Dialog.

To import registry entries from a Registration File (.reg), use the [Import REG file] toolbar
button to import registry entries from a Windows Registration File (.reg). Only files created
with Windows 2000 or higher are supported.

How to Build and Install
To build the MSI package:

1. Click on the [Build] toolbar button

2. A “Build Project” dialog will appear showing you the build evolution.

3. Once the build is complete, click on the [Run] toolbar button.

4. A setup wizard will appear that will guide you through the install process of the “story.txt”
file.

Congratulations! You have created your first Advanced Installer MSI package.

By default, the story.txt file will be installed in C:\Program Files (x86)\Your Company\
Your Application.

Browse to that folder in Windows Explorer to check it out.

How to Remove an Installed MSI
You can remove an installed MSI either by going to the “Programs and Features” in the
Control Panel or by using the Advanced Installer application. Simply press the [Run] button
again without modifying anything and the Setup wizard will appear. Select [Remove] in the
second screen and wait until the uninstall process is complete.

If you change anything in the project, pressing [Run] will generate a different package. The
only way to uninstall the old one will then be from the “Programs and Features” in the Control
Panel.

How to Edit Product and Company names
Now it’s time to name your story, and we recommend you choose an attractive name. “Your
Company” or “Your Application” may not be the best suited names for the story you are
distributing. Let’s change them.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://www.advancedinstaller.com/user-guide/registry-picker.html
https://www.advancedinstaller.com/user-guide/registry-picker.html

79Powered by AdvancedInstaller.com

Switch to the “Product Details” page by selecting it in the left-side panel and edit them to
better values.

Product Details Page

Build and Run the package again to check the results. Don’t forget to uninstall it afterwards.

How to Create Shortcuts
We need to create shortcuts to the installed files after Installing in Programs Files(x86) to
make sure they’re easily accessible. For this scenario, we will create two: one in the “Start”
menu and another one on the desktop.

1. Switch back to the “Files and Folders” page.

2. Click on the story.txt file, and then, click on the [New Shortcut] toolbar button. The “New
Shortcut” dialog will appear, allowing you to customize the new shortcut.

Shortcut Properties View

https://www.advancedinstaller.com/user-guide/quick-filter.html

80Powered by AdvancedInstaller.com

3. Change the shortcut name to “Long Story” and click [OK]. The new shortcut will be
added to the Application Shortcut Folder. That means that this shortcut will be installed in
the “Start > All Programs > Product Name” menu of the Target Computer.

4. To create a shortcut that will be installed on the Target Computer’s desktop, select the
Desktop folder in the “Folders” tree and click the [New Shortcut] button. A file picker
dialog will pop up, allowing you to select the target file of this new shortcut.

File Selector

5. Select story.txt and press [OK]. After you change the shortcut name to “Long Story”, click
[OK] again in the “New Shortcut” dialog. The new shortcut will be added to the “Desktop”
folder.

Build and Run again to check the results, and uninstall when you’re done.

How to Change the Product Version
In the future, you may want to release a new version of this story. Or fix some issues
discovered in the first release. This is super easy to do with Advanced Installer.

1. Open the story.txt file using your favorite text editor and add a couple of lines to it, so that
we have an actual file change.

2. Then, switch to the “Product Details” page by selecting it from the left-side panel. Now,
edit the “Product Version” field to “2.0.0”.

3. When building, saving or selecting another page, you will be asked to generate a new
Product Code. Answer “Generate new” if you want the new package to automatically
upgrade the previous version of the story (if found on the target computer). If you answer
“Keep existing”, the two versions will be prevented from being installed simultaneously on
the same computer.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

81Powered by AdvancedInstaller.com

Wise Package Studio
Wise Package Studio is a suite of tools that allows you to create and edit packages,
transforms, patches, and more.

First Time Settings
Before we create MSI packages, we must install Wise Package Studio. Once installed, we
need to make some configurations.

One of these configurations is related to merge modules. To include these files in the
package, we must either populate the default directory of the Wise with merge modules, or
we must redirect to a directory that contains these modules.

You can do this with the Windows Installer Editor, Tools \ Options \ Merge Modules menu,
Default Merge Module Directory option:

Wise Options View

82Powered by AdvancedInstaller.com

It is also recommended to set Advertising options before starting any captures. Because dll
registration is done through registries, it is not recommended to have it be captured, since
Wise registers them automatically.

Wise Options View

The “Automatically add self-registration” option must be unchecked.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

83Powered by AdvancedInstaller.com

How to Create a Project
After launching Wise Package Studio, you will be presented with a page where you can
choose the type of project you want to create.

Wise Package Studio Main View

1. Select Windows Installer Editor

New Installer window in Wise Package Studio

84Powered by AdvancedInstaller.com

2. From the Predefined Templates, select Windows Application and click OK
That’s it! The project is now created and you can start adding information to your MSI
package.

How to Add Files
The most important step in creating an MSI package is adding a file or folder.

1. Navigate to the Files page by selecting it from the left-side panel.

New Installer window in Wise Package Studio

2. In this window, the explorer tabs located in the top show the folders, files and overall
content stored in the machine. On the left you have the folders, and on the right, the
contents of a specific folder.

3. The bottom two tabs show what’s present in the Windows Installer package. Again, on
the left, you can find the folders, and on the right, the folder contents.

4. To add files, select the file you want to add, in our case story.txt, and click the Add file
button.

Wise Package Studio will then create the features and components automatically..

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

85Powered by AdvancedInstaller.com

How to Add a Registry
To add a registry to your package:

1. Navigate to the Registry page in the left pane. As with the Files page, the page is split in
4 areas. The top two areas show registries and values that are present on your machine,
and the bottom panes display what will be added from the package.

2. Click the Add button.

3. A Registry Details window will appear where you can specify the registry root, key, name,
value and data type.

Wise Registry Editor Page

86Powered by AdvancedInstaller.com

4. Input the values and click OK. When finished, the registry will appear in the bottom view
area.

Wise Registry Editor Page

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

87Powered by AdvancedInstaller.com

How to Edit Product and Company Names
You need to specify a name and manufacturer for your MSI. To do this, navigate to the
Product Details page. There, modify the Product Name and Manufacturer.

Wise Product Details Page

How to Create Shortcuts
We need to create shortcuts to the installed files to allow for easier access. So, let’s create a
shortcut in the Start Menu.

1. Start by navigating to the Shortcuts Page, and click the Add button from the right pane.

88Powered by AdvancedInstaller.com

Wise Shortcuts Page

2. Keep the default settings and click Next.

Wise Shortcuts Page

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

89Powered by AdvancedInstaller.com

3. Select the file for which the shortcut will be made. In our case it’s story.txt. Then, click
Next.

Wise Shortcuts Page

4. We also need to specify the directory where the shortcut will be created. In our case, we
configured the shortcut to be placed in Start Menu\Programs. After you choose your
directory, click Next.

Wise Shortcuts Page

90Powered by AdvancedInstaller.com

5. If you have any additional arguments or settings, configure them here. Otherwise click
OK.

Wise Shortcuts Page

6. The shortcut will now be created when the package is installed on the machine.

How to Change the Product Version
At some point, you may need to release a new version of the story -- including fixes to some
issues discovered in the first release.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

91Powered by AdvancedInstaller.com

1. Switch to the Product Details page by selecting it in the left-side panel. Then, edit the
Version field to “2.0.0”.

Wise Product Details Page

2. Select the Product Code and click the Change button.

Wise Product Details Page

Note: When changing the version of an MSI package, the Product Code must also be
changed.

92Powered by AdvancedInstaller.com

3. Wise Package Studio will warn you that if this is an upgrade package, you shouldn’t
change the upgrade code.

In our case, this is a newer version of the package, so we will click NO.

Wise Product Details Page

4. Once NO is clicked, Wise Package Studio automatically generates a new Product Code. A
new version of the installer is now properly configured.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

93Powered by AdvancedInstaller.com

How to Build and Install

1. To build the MSI package, click navigate to File > Compile or F7.

Compile the project in Wise Package Studio

2. A window will appear asking where the MSI should be changed. Type the MSI name and
save it to the location you wish.

Save location dialog

94Powered by AdvancedInstaller.com

Congratulations! You have created your first Wise Package Studio MSI package.

Now, if you navigate to the build location and try to install the package, all of the previous
settings will be applied on the machine.

The resulted MSI installer

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

95Powered by AdvancedInstaller.com

Capture/Repackage EXE installers

Repackaging Best Practices
Repackaging allows you to create projects based on capturing existing installations.The
installation repackaging operation focuses on monitoring the file system and registry
changes performed by the monitored installation.

Repackager flow

After repackaging an installation, you may need to perform some adjustments to obtain a
working installation package.

When should I repackage an installation?
We recommend that you repackage installations only for these specific scenarios:

• To create consistent, standardized, and customized installations: Repackaging an
installation so that it adheres to your organization’s standards reduces the cost of
supporting end users’ desktops.

• To create silent installations or limit the options available to end users: This streamlines
installations and eases application deployment.

• To migrate installations to the MSIX format: Migrate legacy installers to the latest MSIX
packaging standard. Repackaging those installations lets you take full advantage of the
latest features. Also, Active Directory deployment, SCCM, and Intune require the MSI/

MSIX format.

Tips for an optimal repackaging result
• Repackage in a clean environment.

• Launch the Repackager remotely or install Advanced Installer on a clean virtual machine.

• Use the Repackager interface to exclude unwanted items from the new package.

• Close all other applications that might create noise during the repackaging process.

New to MSIX? Check out the Free MSIX Packaging Fundamentals Ebook.

https://www.advancedinstaller.com/msix-packaging-fundamentals-free-ebook-announcement.html

96Powered by AdvancedInstaller.com

Repackaging in a clean environment
To avoid capturing unwanted modifications produced by different software running on the
PC, repackaging should be performed in a clean environment where only the OS is installed.

The Repackager can be configured to capture an installation running on your local machine,
where Advanced Installer is installed, or on a new virtual machine (a much cleaner system
which can yield much more accurate results).

It is strongly recommended to disable anti-viruses, firewalls and Windows updates on the
machine you will use for repackaging. This is because any system software working in the
background may generate changes that could interrupt or clash in the newly created
package.

If during the repackaging operation the system restarts, don’t worry, the repackaging
operation will continue its process after the system restart.

Clean image

Description
Most of the older software isn’t based on the Windows Installer technology.

To benefit from the advantages offered by the MSI technology, they must be transformed into
packages (msi extension files). Moreover, it requires monitoring for what is actually installed
on a system (files, registries, shortcuts, services, etc).

There are specialized tools that capture everything a setup adds to a machine, after the
system’s analysis resulting in msi files. For testing, if the capture’s result is identical to the
original setup’s capture, you need to go back to the original state of the system. In technical
terms, this state is called a Clean Image (clean meaning that the application is already
installed).

Necessity
As we’ve stressed before, when you want to repackage an application, you need to consider
the following: the system where you will capture that application has to be as clean as
possible.

A clean system (also called a clean image) contains mainly the operating system and almost
nothing else. Because of this, when the capture is made, there’s little to no interference with
the system.

If applications have dependencies, we won’t be able to use a 100% clean image, but we can
try to keep the system as clean as possible by following these steps:

Note: Even commonplace applications like screensavers, could interfere in the capture.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://www.advancedinstaller.com/user-guide/repackaging-VMs.html

97Powered by AdvancedInstaller.com

• Stopping all applications

• Stopping all unnecessary services

• Emptying the Recycle Bin

• Deactivating screensavers

• Deactivating the antivirus

• Deactivating any programs that are running in the background

If needed, you can add software or customizations before starting the capture of an
application (Environment variables, Firewall Rules, etc).

Local vs Virtual Machine
There are various ways to repackage an application and the process you choose to do so
will depend on your repackaging tool and whether or not you have a virtual machine or a
hypervisor solution.

We’ll use Advanced Installer to go through some options to see which ones are the most
practical.

Repackage on the host machine

Since best practices recommend to perform the repackaging on a clean vanilla machine, you
need to rebuild the host device after every attempt to repackage an application -- and that is
not a quick step.

This is the reason why nobody really uses the local host machine to repackage an application
unless it is needed (i.e. with hardware dependent application). In the past, though, that was
the only option, which made repackaging an application far more time consuming than it is
now. Today, IT Professionals save time by setting up multiple virtual machines with a single
host device and running them simultaneously.

You can achieve this by having Advanced Installer installed on your host machine. Once you
launch the Advanced Repackager and select the installer you want to repackage, all you need
to do is click on the “Start Local” toolbar button to run you through the repackaging process.

Repackage directly on a virtual machine

All the hassle caused by rebuilding the local host devices after every attempt to repackage an
application is now gone. New tools, including but not limited to VMware Workstation or
Microsoft Hyper-V, sorted that out. With them, you can create snapshots and revert your
Virtual Machine to any previously created snapshot in no time.

Just make sure you have Advanced Installer Architect installed on the virtual machine (the
one used for repackaging the application), instead of having it installed on the host itself.

https://www.advancedinstaller.com/user-guide/repackaging-best-practices.html

98Powered by AdvancedInstaller.com

Same as above, you have to use the “Start Local’’ toolbar button to run you through the
repackaging process.

Connect and repackage on a virtual machine

The Advanced Installer’s Repackager supports integrations with VMware Workstation,
VMware vSphere, and Hyper-V virtual machines.

This means you can connect to any snapshot of the virtual machine and fire up the
Repackager from there; all of this within the Advanced Installer’s interface installed on the
local host.

Just click “Start in VM” from the toolbar to open the list of configured virtual machines you
can connect to and repackage your application.

Step-by-step instructions
In the Advanced Installer user guide, you can find step-by-step tutorials that show you how to
repackage an application on the following machine types:

• VMWare virtual machine

• Hyper-V virtual machine

• VMWare VSphere

The tutorials will also guide you on how to edit your virtual machines profiles, so you don’t
have to go through the process of manually copying and reverting your machines during the
repackaging process.

Using a virtual machine when repackaging
For a faster repackaging operation, we recommend to use virtual machines, due to the fact
that they allow you to quickly revert to the same state, ensuring the same conditions for the
repackaging operation.

To have a better repackaging experience with VMware and Hyper-V virtualization providers,
you must install Advanced Installer tools. Avoid having to install the tools every time, by
copying and installing Advanced Installer Tools (osprovision.exe) from the following location,
then saving the snapshot:

C:\Program Files (x86)\Caphyon\Advanced Installer 15.4\bin

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://www.advancedinstaller.com/user-guide/tutorial-repackager-vm.html
https://www.advancedinstaller.com/user-guide/tutorial-repackager-hyper-v.html
http://advancedinstaller.com/user-guide/tutorial-repackaging-using-vsphere.html
https://www.advancedinstaller.com/user-guide/edit-vm-profiles.html
https://www.advancedinstaller.com/user-guide/tutorial-repackager-vm.html
https://www.advancedinstaller.com/user-guide/tutorial-repackager-hyper-v.html
https://www.advancedinstaller.com/user-guide/qa-repackager-snapshots.html

99Powered by AdvancedInstaller.com

This is a representation of the flow for using a virtual machine:

If you’re using Hyper-V as your virtualization provider, make sure that you select the standard
checkpoint option when creating the checkpoint so that the installed Advanced Installer
Tools service can be properly captured .

Hyper-V Settings

100Powered by AdvancedInstaller.com

Testing packages in System Context
If you are repackawging applications, chances are you will use some kind of infrastructure
management tool (IMT) to push them in your infrastructure .

There are a lot of IMTs out there, but the most popular (and widely used) are:

• Microsoft Endpoint Manager Configuration Manager (MEMCM), formerly known as
System Center Configuration Manager (SCCM)

• Microsoft Intune

There is one general rule that applies to most IMTs: all software installations are performed
via the system context (as referred to by the IT Pros).

What is the System Context
The system context refers to the LOCAL SYSTEM account, or NT Authority\System. The
LocalSystem account is a built-in Windows Account. It is the most powerful account on a
Windows local instance, more powerful than any admin account on that machine.

Most of the services from a Windows machine run in the system account -- the account with
the highest privileges.

What is PSEXEC
A tool called PSExec must be used to access the LocalSystem account. PsExec is a
command-line utility for Windows which allows administrators to run programs on local and
remote computers. It’s part of Sysinternals pstools suite built by Mark Russinovich.

Packaging and deployment of desktop applications for enterprise customers is a
challenge. This is why we created a handy checklist for you to follow the Enterprise
Packaging Recommendations.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/services/localsystem-account?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/sysinternals/downloads/pstools
https://www.advancedinstaller.com/software-packaging-checklist.html
https://www.advancedinstaller.com/software-packaging-checklist.html

101Powered by AdvancedInstaller.com

How to access the System Context with PSEXEC
Once you download and extract the Sysinternals PsTools Suite, you will find the PSEXEC.EXE

PSTools structure

To get into the System Context:

1. Open CDM.EXE as an Administrator

2. Type the following command: %pathtopsexec%\psexec.exe -s -i cmd

Run CMD with PSExec

3. Click Enter

102Powered by AdvancedInstaller.com

A new CMD window should appear. If you type whoami in the new CMD, you should appear
as the NT Authority\System.

CMD elevated with NT Authority\System

From this new CMD (which runs in the system context), it is recommended to install your MSI
packages using the msiexec.exe commands. If tests are successful in this context, it means
that the application can be safely deployed within your IMT of choice.

It is important to understand that in infrastructures, software packages are not installed
within the user context. Moreover, in most infrastructures, users don’t have administrator
rights to install or change anything on the system.

For example, if you have a package that places user registry or user files, you always have to
use advertised shortcuts or the Active Setup mechanism. This will ensure that user data will
be applied to all users.

It’s also good to understand that if you want to perform changes in the current user context,
it will be tricky and you will need to use alternative solutions.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

103Powered by AdvancedInstaller.com

Advanced Installer

Capture with Advanced Installer
With the Advanced Repackager opened, you have two options:

1. Capture a setup file

2. Session monitoring

By checking “Session monitoring”, the Advanced Repackager will perform an initial snapshot,
wait for your input to continue (e.g. perform any changes on the machine on this step), and
then take a second snapshot of the system.

In this example, we are going through a VLC capture, so we can leave the “Session
Monitoring” option unchecked.

Once the Capture Setup button is pressed, the Advanced Repackager asks for the installation
source file. In our case, we selected the vlc.exe.

Advanced Repackager Main View

After the setup file has been selected, the Advanced Repackager gives you the option to
configure additional settings, or create other installation profiles. These options are intended
for senior IT Pros. In our case, we left everything as default.

As we are going to discuss in the chapter Local vs Virtual Machines, you can edit your virtual
machines profiles with Advanced Installer and it takes care of everything.

https://www.advancedinstaller.com/user-guide/tutorial-repackager.html#customize-options

104Powered by AdvancedInstaller.com

By adding a virtual machine profile, Advanced Installer can be configured to automatically
revert to a clean image, start the capture on the machine, retrieve all the information
gathered during the process and close the virtual machine. In our scenario, we are already
performing the capture on a clean machine, so we are going to click “Start Local”.

Advanced Repackager Main View

The Advanced Repackager asks for a location to save the repackaged output project. Select
the location and name of the .rpp file and click Save.

Repackage Project Save Location

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

105Powered by AdvancedInstaller.com

The Advanced Repackager automatically finds services and applications that could interfere
with the capture and gives you the option to stop them before continuing with the capture.

Target Machine State Window

Here’s where the first system scan starts. When this is finished, the installation of the VLC
media player automatically starts.

Advanced Repackager First System Scan

106Powered by AdvancedInstaller.com

Initial System Scan finished

Next, we install VLC. In our case we went with everything as default.

App Installation

Once the installation of VLC Media Player is finished, the Advanced Repackager asks if you
are ready to proceed. If any additional changes on the system must be performed, you can
make them and click OK when finished.

Advanced Repackager confirm window to continue with the system capture

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

107Powered by AdvancedInstaller.com

Then, the second system scan starts.

Advanced Repackager Second System Scan

Second System Scan finished

108Powered by AdvancedInstaller.com

At this point, both system scans have finished and the Advanced Repackager performed a
comparison, leaving the differences in the final project.

Next, a cleanup of the capture is necessary to select only the resources related to VLC Media
player.

Cleaning Advanced Installer’s Captures
System captures will never be perfect and it’s impossible to avoid unnecessary data from
being captured by a repackaging tool.

Before building the MSI, it is important to review and delete unwanted data. After the capture
is finished, each tab must be checked.

The Information tab contains the basic information for the MSI, such as product name,
version, publisher.

Advanced Repackager Capture Output

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

109Powered by AdvancedInstaller.com

The Files and Folders tab contains all the files captured during the process. In this case, only
files and folders related to VLC were detected by the Advanced Repackager, so there is no
need to remove anything.

Of course, this is not always the case. You will need to have some knowledge of which files
and folders belong to your captured application.

Advanced Repackager Files Capture Output

Any additional registry that is not related to the application can be removed in the Registry
tab. As you can see from the screenshot below, there are a lot of unnecessary entries that
have been removed from the project.

Again, this is not always the same and you will need to make an educated guess to decide
what needs to be added and what is relevant to the application.

110Powered by AdvancedInstaller.com

Advanced Repackager Registry Capture Output

The last tab we will find is System. In System, you can check and remove any additional
information from the project like shortcuts, services, firewalls and the like.

For example, in our VLC capture, we removed 4 shortcuts that were pointing to a website and
left only the shortcuts pointing to the executables.

Advanced Repackager System Capture Output

Don’t worry if you accidentally exclude any relevant information for your application. The
repackager project can be saved and kept on your machine, and you can always modify it.

This process takes a lot of trial and error until you have a better grasp of how applications
work and what should be kept or removed from a repackaging scenario.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

111Powered by AdvancedInstaller.com

Editing and Modifying Advanced Installer’s captures/MSIs
When the capture is ready, all you have to do is click Open in Advanced Installer, to create an
.aip project.

The .aip project allows you to perform additional changes and then output the final MSI. You
can perform changes by navigating to the Page -- as described in our previous chapters.

Once the project is adjusted to your needs, you can save it by clicking the Save button
located in the upper-left corner.

Advanced Installer Main View

Advanced Installer Project Save Location

112Powered by AdvancedInstaller.com

Compiling .aip in .msi
To compile an Advanced Installer .aip project into an MSI, first navigate to the Builds page.

Advanced Repackager Builds Page

In this page you can add configure builds (outputs) for different types of technologies. We
used a DefaultBuild which represents an MSI.

For MSI, select Single MSI with resources inside (or outside if this is the preferred method),
select the output folder and MSI name.

The default project settings are more than enough to output a correct MSI file.

Note: Additional build types are: APP-V, APPX, MSIX, APPXBUNDLE, MSIXBUNDLE and
ThinApp.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

113Powered by AdvancedInstaller.com

Next, click Build in the upper left corner.

Advanced Repackager Build Button

The MSI file is saved in your selected build location under the folder %applicationname%-
SetupFiles.

Wise Package Studio

Capture with Wise
When a setup is not an MSI, or is a hidden MSI inside the EXE setup, a capture is required.

The capture is done with Wise by selecting the SetupCapture menu.

Wise Installer Editor

114Powered by AdvancedInstaller.com

Double-clicking on SetupCapture brings up a new wizard which guides you through the
process. For captures, the first option SetupCapture is kept and we click Next.

Setup Capture Window

The First Use Settings option gives you the possibility to install an MSI file with the settings
you need, and Wise outputs a transform file (MST) with those settings included.

Since our intention is to convert an EXE installer to an MSI, in the next step, we need to
determine the location of the capture result.

Target Installation and Output Directory

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

115Powered by AdvancedInstaller.com

Target Installation refers to the location where the project will be outputted. You can choose
between WSI and MSI. But first , it is recommended to create a WSI file.

The WSI file is an intermediary step to have a Wise project from where the MSI will be built.

After the settings are configured as shown in the previous image, click Next.

Additional settings for capture window

Although Wise usually has all the right settings configured out of the box, it doesn’t hurt to
double check that the Convert registry into an advertising info option is set.

Click on Settings and perform the configurations as shown in the image below.

116Powered by AdvancedInstaller.com

Additional settings for capture window

Snapshot is the preferred capture method. The resulting WSI project is created by comparing
system snapshots before and after a software installation.

Capture type selector

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

117Powered by AdvancedInstaller.com

Here’s where the initial analysis of the system starts.

Initial System Snapshot

After the initial system scan, the application can be installed.

App installation

Browse to the EXE file you need, and click Next. The installation of your EXE will start. Once
the installation is finished, press next.

118Powered by AdvancedInstaller.com

Second System Capture

After clicking Next, the application is installed according to the installation instructions and
followed by the second analysis of the system.

Capture output

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

119Powered by AdvancedInstaller.com

When the second analysis of the system ends, all the changes regarding files, INIs, shortcuts
and registry keys are presented by Wise.

It is recommended to clean the capture during this step. Still, depending on your needs, you
could click Next and skip the capture clean up, choosing to perform it at a later time when
the WSI project is created.

Once the capture is complete, you can fill in various fields: Name, Version, Manufacturer -- as
seen in the image below.

General details regarding the capture

Once the capture is finished, you will have a wsi file, which when compiled, will
generate our package (the MSI).

Wise Project generation

120Powered by AdvancedInstaller.com

Editing / Modifying Wise captures/MSIs
For each category of information, there are some special windows you need to follow.
They’re easy to use and understand.

Once your capture is ready, open the .WSI project that was previously saved

An .WSI project allows you to perform additional changes and output the final MSI. You can
perform any changes by navigating to the specific tabs, as described in our previous
chapters.

When the project is adjusted to your needs, you can save it by clicking the Save button
located in the upper-left corner.

Main Window of Wise Installer Editor

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

121Powered by AdvancedInstaller.com

Once the capture is clean, it is compiled, validated, and tested.

Compile Wise Installer Project to MSI

122Powered by AdvancedInstaller.com

Create MSI Transform files (MST)
MSI Transforms (MSTs) are small files that change the MSI content. They can change
anything in the MSI database like adding/removing files, registry, shortcuts, sequences,
upgrades, and so on.

As a general rule in software packaging, when a software installer is received in the form of
an MSI, anything that is changed should be done through transform files (MSTs).

Developers will provide new MSI installers with every software update, but in an
infrastructure, it is the software packager’s job to modify it as per implementation specs.

Advanced Installer
Advanced Installer makes it even easier to create transform files. When opening Advanced
Installer, it offers three ways to create an MST:

New Transform in Advanced Installer

1. New Transform : Creates a simple transform file (MST) without any customizations.

2. Response Transform: Like Wise Packaging Studio, Advanced Installer offers the
possibility to create a response transform. This type of operation starts the installation of
the selected MSI, captures the desired changes and creates the MST. Keep in mind that
this only captures the changes and the MSI is not installed on the system .

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

123Powered by AdvancedInstaller.com

3. Delta Transform: Creates a transform file (MST) that contains the differences between
two MSI files.

In our case, we went with the standard New Transform option, not applying any changes on
it.

The steps to achieve this are the following:

1. Click on New Transform

2. Click on Create Project

Select the MSI over which the MST will be created

3. Select the MSI file.

That’s it. You just created the transform file with Advanced Installer in a few clicks.

124Powered by AdvancedInstaller.com

Wise Package Studio
To create a transform file for an MSI with Wise Package Studio, perform the following steps:

1. Open Wise Package Studio

2. Double-click InstallTailor

Install Tailor Location

3. Select the MSI for which Wise Package Studio will create a transform.

4. Click Next.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

125Powered by AdvancedInstaller.com

Base MSI over which the MST will be created

5. Install the package with your selected settings. Keep in mind that this doesn’t really
install the package on the machine. Wise Package Studio only identifies the changes in
the installation sequence. Click Next.

Response Transform creation

126Powered by AdvancedInstaller.com

6. After the settings have been captured by Wise, click OK.

Changes have been captured in the MST

7. Select a save location for the MST file.

8. Click Next.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

127Powered by AdvancedInstaller.com

MST Save Location

9. Once the transform file (MST) has been saved, you can open it with Wise Package Studio.

Wise View for MST

You can then apply any additional changes to the transform file as needed.

128Powered by AdvancedInstaller.com

Create Patches (MSP)
A patch is an incremental update to an existing installation of your application. You cannot
install a patch if the target version (the one you want to update) is missing.

You have two ways to upgrade an MSI, each with its pros and cons.

You can use a patch (MSP) v1.1. This has a reduced size because it only contains the
changes brought to v1.1 of the MSI. However, it requires v1.0 of the MSI to be present on the
target machine, and you must follow the rules of creation for MSP’s.

The second option is to use v1.1 MSI. You don’t have to follow strict rules for its creation like
with MSP’s, you can add an upgrade to the v1.0, and v1.0 doesn’t have to be present on the
machine. However, because it’s a standalone install, the size of the MSI is larger than the
MSP.

When using the first option to create a patch file between two MSI files -- keep in mind the
following aspects:

1. The second MSI should not change any components or features, including setting
different keypaths, adding files or moving components between features. Exceptions
to this are: updated registry values or newer versions of files already present in the
components

2. If files must be added, create a new top-level feature and its child component(s) to
contain the new files.

With these points out of the way, let’s see how a patch can be created.

Advanced Installer
In order to create a patch with Advanced Installer, you need to have the initial version of the
MSI (for example version 1.0) and the new updated MSI (for example version 2.0).

1. If Advanced Installer is not currently running, start it by double-clicking on the desktop
icon or by selecting it from the Start > All Programs > Advanced Installer menu. When
the application starts, you will be presented a dialog where you can choose the type of
project you want to create.

2. Select the Updates > Patch type and press the Create Project button. The new project is
created and you will be able to edit it.

Note: There is a complete list of rules for you to follow when implementing MSPs here.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://www.advancedinstaller.com/user-guide/patches.html

129Powered by AdvancedInstaller.com

3. Save the project by using the Save toolbar button and choose the file name and the
destination folder. This will also be the folder where your patch package (MSP) will be
created.

New Patch in Advanced Installer

4. The most important step in creating an MSP package is creating the Upgraded and
Target images.

5. Select the Images page by selecting it from the left-side panel.

6. Next, click on the New Upgraded toolbar button, browse to the newest version of the MSI
(for example 2.0). A Windows Installer dialog will briefly pop up while the Administrative
Image is being extracted.

130Powered by AdvancedInstaller.com

First MSI selection

7. Next, click on the New Target toolbar button, and browse to where the initial version of
the MSI (for example version 1.0) is stored

Second MSI Selection

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

131Powered by AdvancedInstaller.com

8. Now that you have created the Upgraded and Target images, click on the Build toolbar
button -- a Build Project dialog will appear showing you the build evolution.

Patch build window

132Powered by AdvancedInstaller.com

9. Once the build is complete, click on the Run toolbar button. The setup wizard will appear.
Alternatively, you can browse to the output folder in your previously configured save location.

Resulted Patch

Keep in mind that there are some Patch Rules that you must be aware of before starting to
build a patch installer.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://www.advancedinstaller.com/user-guide/patches.html

133Powered by AdvancedInstaller.com

Wise Package Studio
To create a patch with Wise Package Studio, you will need both the previous and new
version of the MSI.

Assuming you have the two MSI files, and you followed the rules above when creating the
second MSI, here are the steps to create a patch file with Wise Package Studio:

1. Open Wise Package Studio.

2. Double-click on Patch Creation.

Patch Creator in Wise Package Studio

134Powered by AdvancedInstaller.com

3. At the welcome screen, click Next.

Patch Creation Window

4. Select Create a patch file and click Next.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

135Powered by AdvancedInstaller.com

Patch Creation Window

5. Click Add to select the initial (previous) MSI.

First MSI Selection

136Powered by AdvancedInstaller.com

6. In the Previous MSI Path, click on Browse and select your MSI file. Match Product Code
and Match Upgrade Code must be selected.The Version to check must be set to Check
Major, Minor, and Update Version. The Version Relationship must be set to Base Version
must be = Installed Version.Click OK and then Next.

Previous MSI Path

7. In the next window, click Browse to select your newer MSI and then click Next.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

137Powered by AdvancedInstaller.com

Second MSI Selection

8. If you have any additional patches, create a sequence of the installation. The sequence
ensures that patches are applied in the correct order no matter the order in which they
are provided to the machine.Click Next.

138Powered by AdvancedInstaller.com

Patch Sequencing Window

9. In the Output .MSP file field, click Browse and select the location where the patch file will
be created. Make sure that File Sequence Start and Disk ID Start are set to 1. Setting the
file sequence and disk id to 1 means that Wise Package Studio will perform a comparison
between all the files and cabs present in both MSIs.Click Next.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

139Powered by AdvancedInstaller.com

Patch Output Window

Wise Package Studio will begin the comparison between the two MSIs and output the patch
installer to the set location.

140Powered by AdvancedInstaller.com

Creating Suite Installations
Windows Installer is a great technology when it comes to creating an installer, but it falls
short on the ability to chain multiple MSI installations.

While Windows Installer has predefined support, it’s still limited in what you can do with it. To
fill this void, Advanced Installer offers the possibility to create suite installations, letting you
chain multiple MSI packages and define command lines. The resulting EXE extracts the MSIs
and installs them one by one according to what is configured.

You can also use scripting tools like PowerShell App Deployment Toolkit, which we cover in a
later chapter, to create a chain installation of multiple installers.

Now, let’s go through how to create a single bundle installation for multiple applications.

In our example, we will just use three applications, but you can use as many as you want.
This gives your users a simpler UX during the installation they will be able to download a
single setup package and use that to install all of your applications.

For this example, we will work with three applications, one is a license manager and the other
two are separate applications that are deployed to users. The license manager would be
used by all users to handle their credentials in the other two applications.

Create the project
To create a project, the first step is to create a new empty Enterprise project without using
the wizard. If Advanced Installer is not currently running, launch it by double-clicking a
desktop icon or selecting it from the “Start“ menu. When the application starts, you will see a
dialog where you can choose the “Installer” > “Enterprise” project type.

New Project in Advanced Installer

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://www.advancedinstaller.com/user-guide/qa-chained-packages.html

141Powered by AdvancedInstaller.com

Don’t forget to untick the “Use wizard to create the project.“ option. As we mentioned, for this
project you need to start with an empty project, so you can skip the wizard.

Project Options

Setup your suite installer product details
In the “Product Details“ page, you need to configure the information from groups “Product
Details“ and “Add and Remove Programs (Control Panel)“.

The most important step here is to untick the “Register product with Windows Installer“
option .

By disabling this option, you will make sure that your bundle installer will never appear in the
Control Panel list of installed applications. There, you will only see the real applications that
the bundle will install, each with its separate entry. Lets see how you add those applications
in the project.

Product Details

142Powered by AdvancedInstaller.com

Add your setup packages
To add your setup packages:

1. Go to the “Prerequisites“ page, where you need to add each package as a “Feature-based“
prerequisite. This will result in having a new feature created for each package in the
Organization page. By setting conditions on the features (explained later in this tutorial),
you will be able to control which applications get installed or not.

Feature-based Options

2. After you add the packages, you can select each one of them and continue configuring it
from the right side pane. You will have three tabs, “Properties“, “Setup Files“ and “Install
Conditions“. Each of these tabs contains important settings that you must define.

3. In the “Properties’’ tab, you must define the name of your package and other related
information. In ‘Setup Files’,’ you will find a high-priority area to customize: the “Install
Command Lines“. These command lines get passed to your packages when the bundle
installer will execute them. It is important to set the application to install silently. For MSI
packages the command line is /qn and for EXE packages built with Advanced Installer, it
is /exenoui /qn.

In the below image you can see a set of the command lines. It starts with the “/qn” option to
specify this is a silent installation, then it sets the property APPDIR with the value of the
parent installation folder, and at the end, it sets another property from the installer, configured
to store a port number in this example.

Install Command Lines

In the “Install Conditions” tab, you must select the option “Always install prerequisite” for all
packages, be it MSI or EXE. Create a custom selection dialog

Create a custom selection dialog

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

143Powered by AdvancedInstaller.com

By now you’ve seen that our samples use the Graphite theme, but the same applies to other
themes too. You can change the installer theme from the “Themes“ page, “Preview“ tab.

Since your suite installation will install three different applications, you might want to let the
user select which application to install. This is an optional step and you may skip if you want
your users to always install all available applications.

In this step, we will show you how to create a new installer dialog with custom controls on it.
For this scenario, we’re using simple checkboxes from where the suite installer will decide
which application to install.

1. First, you should remove the “FolderDlg’’ predefined dialog from the list, since it is not
useful for suite installations. You can do this directly from the Dialogs page.

2. Once that’s clear, you can create a new empty dialog on which you can add the texts and
checkbox controls, from our toolbox, to get a dialog similar to the one below.

Resulted Suite Installation Dialog

144Powered by AdvancedInstaller.com

3. Each checkbox has a property attached to it, visible in the right side pane from Advanced
Installer when you select the checkbox control. This property must be set in the
Organization page as an install condition for the corresponding feature.

Additional Install Options
In the Dialogs page, you can create and chain as many new dialogs as you wish. You can
show certain dialogs only if a specific application is selected to be installed, or you can hide/
show, enable/disable UI controls from the dialogs.

In the image below, there is an example of capturing the parent install path for all
applications. We say it is the parent install path, because at the end of this path, we instruct
the application to create their own subfolder, by adding this folder in the command line set.

For example, for the second application, we create the subfolder “SecondFolderApp“ (as you
can see in the screenshot from step 3).

Also, we capture the port number for the second application and pass that through the
command line too. As seen in the image, all the parameters required by the actual installers
are passed in their command lines. There is no other way to pass information from the suite
installation to the independent installer packages.

Suite Installation Additional Options

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

145Powered by AdvancedInstaller.com

Configure Output Package
To make your suite installation as a single package, you must go to the Build page and set
the package type to “Single EXE setup(resources inside)“, this will make Advanced Installer
generate a single EXE as an output that your users can download.

Another important configuration you need to enable is the option “Run as administrator“ from
the “Install Parameters“ page. This option is important as it will ensure your applications
inherit the elevated credentials from the bundle installer, so they can install accordingly.
Disabling this option may lead to failed installations.

Build Project
Now that you have finished configuring the project, you can build the bundle. Advanced
Installer will build a single EXE package which contains all of your applications, MSIs or
EXEs, and will silently install them based on the user’s selections.

146Powered by AdvancedInstaller.com

Helpful tools

ORCA
Orca is a database editor that helps create, edit packages (msi) and run modules. It provides
a graphical interface for packet validation and highlighting entries that have errors or
warnings.

Orca Main View

Although as a first impression, it looks like Orca doesn’t allow you to edit/create transform
files, it does. You just need to open the msi first, and from the Transform menu, you can open
and create MSTs.

However, Orca lacks a lot of automation and doesn’t have an easy to use GUI, but it might be
a suitable tool to have a look over an MSI or MST when in a rush.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/orca-exe

147Powered by AdvancedInstaller.com

Systracer
SysTracer is a utility tool that performs system snapshots and compares them to the output
to see what has changed.

The steps to perform a Systrace on the system are:

1. Open Systracer

Systracer Main View

http://www.blueproject.ro/systracer

148Powered by AdvancedInstaller.com

2. Click on Take Snapshot

Snapshot Options Window

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

149Powered by AdvancedInstaller.com

3. Chose Full Scan then click Start

Snapshot Options Window

150Powered by AdvancedInstaller.com

4. The first scan of the system starts.

Snapshot in progress

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

151Powered by AdvancedInstaller.com

5. The initial system scan is finished. Now, perform the changes on the system.

Snapshot completed and visible in the main view

152Powered by AdvancedInstaller.com

6. For this example, we changed a few settings for VLC Media Player.

VLC Media Player Options

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

153Powered by AdvancedInstaller.com

7. Open Systracer again, click on Take Snapshot, select Full Scan and click Start.

Snapshot Options Window

154Powered by AdvancedInstaller.com

8. The second system snapshot will begin.

Snapshot in progress

9. The second capture is complete. Click OK.

Snapshot finished

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

155Powered by AdvancedInstaller.com

10. Compare the two snapshots by clicking Compare in the bottom right corner.

Snapshot finished as visible in the main view

11. Select Only differences.

Snapshot Registry compare

156Powered by AdvancedInstaller.com

12. Search through the Registry or Files to find the needed changes. In our example, VLC
kept the settings in a folder from %appdata%\VLC

Snapshot Files compare

This is an excellent tool for a software packager and we consider it a “must have” to help find
the location of stored settings for all applications.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

157Powered by AdvancedInstaller.com

Process Monitor
Process Monitor is a real-time monitoring tool for Windows systems that displays files,
accessed registry and active processes. Additionally, it adds a comprehensive list of
enhancements, such as process monitoring, including termination codes, monitoring of files
loaded into system memory, improved filters, process details activity, and more.

Process Monitor Main View

It can be used to debug applications, but also to check installations and see what is actually
happening.

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

158Powered by AdvancedInstaller.com

 To figure out if an EXE installer contains an MSI and what additional changes it performs,
execute the following steps:

1. Open Process Monitor.

Process Monitor Main View

2. Disable Capture (CTRL+E) and Clear (CTRL+X) the list.

Process Monitor Main View

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

159Powered by AdvancedInstaller.com

3. Navigate to Filter > Filter.

Process Monitor Filters

4. Under Display entries matching this condition, select Operation is Process Create.

Process Monitor Filter Configuration

160Powered by AdvancedInstaller.com

5. Click Add.

Process Monitor Filter Configuration

6. Start the Capture (CTRL+E) again.

Process Monitor Main View

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

161Powered by AdvancedInstaller.com

7. Start your installation.

We started the installation of VMware Workstation, and the Process Monitor detected that
the installer added two redistributables before installing the main package.

Process Monitor Main View

The paths from where the process is executed and the command lines are usually visible, so
it makes the inner workings of an installer easy to understand.

162Powered by AdvancedInstaller.com

Process Explorer
Process Explorer is a utility that manages the processes in the system. It displays
information about a process including the icon, running arguments, memory usage statistics,
users, rights, etc. When monitoring a particular process, you can list all the dll files it uses.
The search option provides the ability to track the process that has resources in use, such as
a file, directory, or registry.

Process Explorer Main View

Its work window is divided into two parts. The top displays a list of active processes, and the
bottom can display (depending on the settings) the dll files that are loaded into the memory
and other information about the active processes.

No installation is required, no administrator rights to run.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

163Powered by AdvancedInstaller.com

Beyond compare
Beyond Compare is a utility for comparing files, directories, FTP site archives, etc. The main
purpose of the program is to help analyze the differences in detail.

Beyond Compare Main View

It’s extremely useful when scripts or folder structures must be compared during the
packaging process.

For example, if a capture is required for repackaging, it’s recommended to perform a
comparison between the original installation directory and the captured directory.

https://www.scootersoftware.com/

164Powered by AdvancedInstaller.com

Powershell App Deployment Toolkit
PowerShell App Deployment Toolkit is an open source project composed from a set of
functions that allow you to perform common application deployment tasks and interact with
the user during a deployment.

PS App Deploy Toolkit Install Window

It’s meant to simplify complex installation/uninstallation scripts and improve the installation
success rates. With a few simple lines, you can create an installation bundle (suite), or
perform additional changes on the system.

Configure PSAppDeployToolkit
Once PSAppDeployToolkit has been downloaded, extract the zip file, navigate to Toolkit\
AppDeployToolkit and edit the AppDeployToolkitConfig.xml.

The AppDeployToolkitConfig.xml is the main configuration xml for the script. There, you can
choose the default log location, message icon, banner, logging options, installation
parameters, languages, and more.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://psappdeploytoolkit.com/
https://github.com/PSAppDeployToolkit/PSAppDeployToolkit/releases

165Powered by AdvancedInstaller.com

PSADT Configuration XML

It might seem like a tedious task, but once you configure PSAppDeployToolkit as you need,
you can use the AppDeployToolkitConfig.xml for every script created in the future, not having
to worry about settings each time you create a new script.

Autocomplete for PSAppDeployToolkit in PowerShell ISE
The next step is not necessary, but it’s a quality of life trick, meant to have autocomplete on
PowerShell App Deployment Toolkit in PowerShell ISE.

1. First, navigate to “C:\Users\(username)\Documents” and create a new folder called
WindowsPowerShell. Inside that folder, create a new folder called Modules.

2. Next, if you downloaded and extracted PSAppDeployToolkit, navigate to the extracted
location and copy the AppDeployToolkit folder (found in the Toolkit folder) in the
previously created Modules folder.

166Powered by AdvancedInstaller.com

PowerShell Modules

3. Go into the copied AppDeployToolkit folder and modify the AppDeployToolkitConfig.xml.
Inside the AppDeployToolkitConfig.xml, change the Toolit_RequireAdmin parameter to
False.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

167Powered by AdvancedInstaller.com

PSADT Configuration XML

168Powered by AdvancedInstaller.com

4. The last step is to edit the PSAppDeployToolkitMain.ps1 with PowerShell ISE. Once
opened with PowerShell ISE, save it as PSAppDeployToolkit.psm1 inside the
AppDeployToolkit folder.

PSM1 Save Location

And that is it, all the commands should appear in the right pane and should auto-complete
when writing.

PowerShell ISE

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

169Powered by AdvancedInstaller.com

Create scripts
Once finished with the above configurations, you are ready to start creating scripts.

In the extracted location, navigate to the Toolkit folder where you will see a folder called Files.

The Files folder is where you will place all of your installation files, either installers like MSI,
MST, MSP, or other configuration files which you can copy later during installation.

PSADT Files Folder for Installation Media

After you copied all the files you need, edit Deploy-Application.ps1 with PowerShell ISE, or
another PowerShell editor of your choice.

The first basic lines that must be edited are your Application Vendor, Application Name,
Application Version and other basic information about the installation. These variables will
appear in the logs, toast notifications or progress box.

170Powered by AdvancedInstaller.com

Deploy-Application.ps1 script

Next, the PSAppDeployToolkit installation logic is composed out of three main actions which
contain three sub-actions for each. The main actions are:

1. Installation

2. Uninstallation

3. Repair

The sub-actions are:

1. Pre-Installation/Pre-Uninstallation/Pre-Repair

2. Installation/Uninstallation/Repair

3. Post-Installation/Post-Uninstallation/Post-Repair
Depending on your requirements, edit the sub-actions you need. In this example, we will
modify only the Installation and Uninstallation main actions.

In the Pre-Installation action, we removed the message that informs us of closing a certain
app or to defer the installation.

In the Installation action, we installed Orca.MSI with the following command:

Execute-MSI -Action Install -Path ‘Orca.Msi’

In the Post-Installation action, we also removed the message that informs us that the
installation is complete. In the end, the script looked like this:

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

171Powered by AdvancedInstaller.com

Deploy-Application.ps1 script

With a line, we have a progress box, an installation sequence and toast notifications for the
user.Next, we moved to the Uninstall actions.

In the Pre-Installation section we removed the initial message.Then,in the Uninstallation
section, we uninstalled Orca with the following command line:

Execute-MSI -Action Uninstall -Path ‘{85F4CBCB-9BBC-4B50-A7D8-E1106771498D}’

At the end, the Uninstall sequence looks like this:

Deploy-Application.ps1 script

Next, the PSAppDeployToolkit installation logic is composed out of three main actions which
contain three sub-actions for each. The main actions are:

1. Installation

2. Uninstallation

3. Repair

The sub-actions are:

1. Pre-Installation/Pre-Uninstallation/Pre-Repair

2. Installation/Uninstallation/Repair

3. Post-Installation/Post-Uninstallation/Post-Repair
Depending on your requirements, edit the sub-actions you need. In this example, we will
modify only the Installation and Uninstallation main actions.

In the Pre-Installation action, we removed the message that informs us of closing a certain
app or to defer the installation.

In the Installation action, we installed Orca.MSI with the following command:

Execute-MSI -Action Install -Path ‘Orca.Msi’

In the Post-Installation action, we also removed the message that informs us that the
installation is complete. In the end, the script looked like this:

172Powered by AdvancedInstaller.com

Deploy-Application.ps1 script

And that is it, the installation script is now done and can be used in the infrastructure.

Execute scripts
You can call the deployapplication.ps1 directly using powershell, and if you prefer, you could
also call deployapplication.exe which sets the executionpolicy correctly.

The preferred method is via the powershell script directly. For this, open an administrator
command prompt and type the following:

powershell.exe -executionpolicy bypass -file deployapplication.ps1

Deploy-Application.ps1 script install execution

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

173Powered by AdvancedInstaller.com

To uninstall the application, we run almost the same command as before, but this time with
the parameter -DeploymentType Uninstall:

powershell.exe -executionpolicy bypass -file deployapplication.ps1
-DeploymentType Uninstall

Deploy-Application.ps1 script uninstall execution

174Powered by AdvancedInstaller.com

Additional Information
For more information about all the functions, syntax and parameters, navigate to the
AppDeployToolkit folder, right-click AppDeployToolkitHelp.ps1 and select Run with
PowerShell.

It will bring up the following window:

PSADT Help Menu

There, you can find all the information you need, and multiple examples for each function.

Advanced Installer offers the possibility to create a chained installation of multiple
packages, without needing the support of 3rd party tools.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://www.advancedinstaller.com/user-guide/qa-chained-packages.html#qa-chained-packages

175Powered by AdvancedInstaller.com

WMI Explorer
WMI Explorer is a small utility that provides the ability to browse and view WMI namespaces/
classes/instances/properties in a single pane of view.

It helps the IT Pro search for the desired classes or instances when he wants to manipulate
the WMI.

One example for this use is when you need to design/implement a kill process script in the
logic of the installation.

To kill a process, you must use the Win32_Process class, which is present in the ROOT\
CIMV2 namespace, to enumerate all the instances. If the name of the process is found in the
instance, you can terminate it.

WMI Explorer Main View

There are dozens of scenarios out there, and if you ever want to quickly find an instance or a
class in the WMI, WMI Explorer is the perfect tool.

https://github.com/vinaypamnani/wmie2/releases

176Powered by AdvancedInstaller.com

List features and components for installed MSIs
This is not actually a tool, but rather a script that helps you compare if you performed the
right changes to an MSI with a MST.

Let’s say that you have a big vendor MSI with lots of features and components and you apply
a transform to it (according to the specifications) that alters features and components (e.g.
you remove certain features).

It shouldn’t be an issue. But, how do you test if everything is installed successfully? How do
you know if you selected the right features and components that need to be installed?

There are cases where a setup.exe that contains a hidden MSI installs that MSI with a certain
INSTALLLEVEL that could remove certain features.

Microsoft offers a VBScript called WiLstPrd.vbs which is present in Windows SDK
Components for Windows Installer Developers.

With it, you can list products, properties, features, components and much more.

How can you use it to compare your original MSI with the one that has the changes you
added?

It’s easy.

First, install the original MSI on a clean machine with the wanted changes.Copy the WiLstPrd.
vbs to a specific location, for example C:\WiLstPrd.vbs.In the same directory, create the
following batch file listfeatandcomp.cmd (C:\listfeatandcomp.cmd):

cscript “C:\WiLstPrd.vbs” {11111111-2222-3333-4444-555555555555} f > “C:\
features.txt”

cscript “C:\WiLstPrd.vbs” {11111111-2222-3333-4444-555555555555} c > “C:\
components.txt”

Replace {11111111-2222-3333-4444-555555555555} with your MSI product code before
executing the batch file.

The “f” parameter outputs the features and the “c” parameter outputs the components. For
more details, check out the official documentation here.

After you double click the listfeatandcomp.cmd, two txt files will be created in C:\, features.
txt and components.txt, each containing the installed and uninstalled features.Now, on a
clean machine, install your MSI with self-designed MST and repeat the steps.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging
https://docs.microsoft.com/en-us/windows/win32/msi/list-products-properties-features-and-components
https://docs.microsoft.com/en-us/windows/win32/msi/platform-sdk-components-for-windows-installer-developers
https://docs.microsoft.com/en-us/windows/win32/msi/platform-sdk-components-for-windows-installer-developers
https://docs.microsoft.com/en-us/windows/win32/msi/list-products-properties-features-and-components

177Powered by AdvancedInstaller.com

After that, with the compare tool of your choice, compare the original features.txt/
components.txt and the modified features.txt/components.txt

You can find WiLstPrd.vbs here.

Wilogutl
Wilogutl.exe assists on the analysis of log files from a Windows Installer installation, and it
displays suggested solutions to errors that are found in a log file.

Non-critical errors are not displayed. Wilogutl.exe can be run in quiet mode or with a user
interface (UI). The tool generates reports as text files in both the UI and quiet modes. It works
best with verbose Windows Installer log files, but it also works with non-verbose logs.

This tool is only available in the Windows SDK Components for Windows Installer
Developers.

https://www.alexandrumarin.com/list-features-and-components-for-installed-msi/
https://docs.microsoft.com/en-us/windows/win32/msi/platform-sdk-components-for-windows-installer-developers?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/msi/platform-sdk-components-for-windows-installer-developers?redirectedfrom=MSDN

178Powered by AdvancedInstaller.com

Debugging
It’s possible that the package we create has some issues: either it does not work properly,
does not install, does not properly self-heals or self-repairs, or even fails to uninstall. So,
here’s what we need to do when that happens.

Logs
First, we need to find the issue. The easiest way to determine where a package is cracking is
to log in and read the log (preferably at the time of the error as it will be easier to identify the
cause then).

The msiexec.exe executable provides a parameter for creating logs, during any stage of the
application (installation, repair, uninstallation). This is / l, with related sub-parameters.

Windows Installer Help

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

179Powered by AdvancedInstaller.com

Log File example

Windows Installer also automatically creates package logs in the current user’s temp
directory. But to do this, we need to set the value of two registries, namely:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE \ SOFTWARE \ Policies \ Microsoft \ Windows \ Installer]

“Debug” = dword: 00000007

“Logging” = “voicewarmupX”

Analyzing the log file
The installation of an MSI file takes a series of actions. These can be standard actions or
custom actions. Each action performed has an associated Return Value. The possible return
values are:

Value Meaning

0 Action not executed

1 Success

2 User canceled

3 Fatal Error

4 Suspended, waiting for reboot

Debugging
It’s possible that the package we create has some issues: either it does not work properly,
does not install, does not properly self-heals or self-repairs, or even fails to uninstall. So,
here’s what we need to do when that happens.

Logs
First, we need to find the issue. The easiest way to determine where a package is cracking is
to log in and read the log (preferably at the time of the error as it will be easier to identify the
cause then).

The msiexec.exe executable provides a parameter for creating logs, during any stage of the
application (installation, repair, uninstallation). This is / l, with related sub-parameters.

Windows Installer Help

180Powered by AdvancedInstaller.com

Looking at the table above, you can see that a return value of 3 is useful. In the Notepad, use
the Find command and search for value 3. You may find various instances of return value 3
in the log file, so you have to determine which one caused the installation to abort. To do that,
when the return value 3 is found in the file, start reading upwards from the error in the log file
and see what actually caused it.

If a fatal error occurs and the installation aborts, the MSI package initiates a rollback
procedure. If the installation is unsuccessful, the installer automatically performs a rollback
installation that returns the system to its original state.

By manually searching through the log file, you may encounter a bunch of continuous lines
with FileRemove or ComponentUnregister.

Rollback is important because the fatal error that caused the install to fail typically occurs
right before the rollback process begins. Also, you can simply search through the log for
Rollback.

So, for each standard action or custom action executed, its return value is displayed in the
log (e.g. Action ended 16:34:29: InstallFiles. Return value 1.).

In the example above, we see that the return value for the InstallFiles standard action was 1,
meaning that the action completed successfully. If this action failed and caused an error, we
would have a return value of 3 -- causing the rest of the installation to stop and the rollback
process to begin (which would turn the system back to the same state it was before the
installation began).

So, as a general rule, if an MSI installation fails, it’s recommended to first open the log, search
for return value 3 and see where the log points.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

181Powered by AdvancedInstaller.com

Checking the Installation Status of Features and Components
The verbose log includes an entry for each feature and component the installation package
may install. The log tells us what the state of a feature or component was prior to the
installation, the state that was requested by the installation, and how the installer left the
feature or component.

Features and components entries appear in the log as in the following example:

MSI (s) (C8:0C): Feature: myFeature; Installed: Absent; Request: Local; Action: Local

MSI (s) (C8:0C): Component: myComponent; Installed: Absent; Request: Local; Action:
Local

 In the verbose log, you will see that:

• The installation state of the feature and component was absent before running the
package.

• The installation package requested a local installation of these features and components

• The feature and component were both installed locally.

The following table summarizes the possible component or feature states that can appear in
the log:

Log entry Value Description

Installed Local The component or feature is currently installed to run
locally.

Source The component or feature is currently installed to run
from source.

Advertise The feature is currently advertised. Only features can be
advertised, components cannot.

Absent The component or feature is not currently installed.

Request Null No request.

Absent Installation requests the component or feature to be
uninstalled.

Local Installation requests the component or feature to be
installed to run locally.

Source Installation requests that the component or feature to
be installed runs from source.

182Powered by AdvancedInstaller.com

In order to check for the features and components states, please search for the
InstallValidate standard action. After the standard action is marked as the current action
being executed, the features and components state are displayed on the following lines in
the log.

Log entry Value Description

Advertised Installation requests the feature to be installed as an
advertised feature.

Reinstall Installation requests the feature be reinstalled.
Components do not use reinstall state

Current Installation requests the feature to be installed in the
default authored install state.

Action Null No action is done.

Absent The installer actually uninstalls the component or
feature.

Local The installer installs the component or feature to run
locally

Source The installer installs the component or feature to run
from source.

Advertised The installer installs the feature as an advertised
feature.

Reinstall The installer reinstalls the feature.

Current he installer installs the feature in the default
authored install state.

FileAbsent The installer uninstalls the component’s files and leaves
all other resources of the component installed.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

183Powered by AdvancedInstaller.com

Tips for log reading
The verbose log gives you useful information about the installation process. For example:

“Disallowing uninstallation of component: GUID’s component since another client exists”

This can happen if the same components are shared between multiple packages installed on
the same machine. Windows Installer keeps a refCount of the components and does not
allow removing them until all the applications that use them are removed.

Also, this may happen if you duplicate a project file (saved under a different name or by using
the “copy-paste” method). It is strongly recommended to not do this because the created
project will have the same GUIDs (Upgrade Code, Product Code, components ID) as the
source/original project. To avoid this, you must use the Save as template option.

If there are files missing from the installation folder during an upgrade operation, search
through the log for the following message:

“Disallowing installation of component: GUID’s component since the same component with
higher versioned keyfile exists”

If you find it, this is the reason why your file is not copied on the target machine.

The upgrade process performs the following actions:

• Detect and completely remove older products. During this operation, the file will be
removed from the machine.

• Install the new product. The file from the upgraded version will not be installed since its
component was not marked for installation.

To overcome this behavior, you can enable the Always overwrite existing file option from the
File Operations Tab of the File Properties.

“MSI (s): File: C:\MyApp\MyExe.exe; Won’t Overwrite; Existing file is of an equal version”

This indicates that the installation package will not overwrite the existing file since it is the
same version as the one being installed.

For a comprehensive understanding on how to read a Windows Installer verbose log file,
check out this article.

https://www.advancedinstaller.com/user-guide/save-as-template.html
https://www.advancedinstaller.com/user-guide/file-operations-tab.html
https://www.advancedinstaller.com/user-guide/file-properties-tab.html
https://www.advancedinstaller.com/user-guide/read-log.html

184Powered by AdvancedInstaller.com

Event Viewer
A variant proposed by the operating system to detect where an application cracks, is the
event viewer (Control Panel \ Administrative Tools).

Event Viewer

The errors made by our package can be identified quite quickly, looking at the time they
appeared, or at the references to MsiInstaller.

For each error, the event viewer provides two entries.

The first window tells us which package the entry refers to, and the second one, what caused
the error. Although they may seem difficult to read, the package is easily identified with the
product code.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

185Powered by AdvancedInstaller.com

Quality Assuring the MSI
Quality assuring a Windows Installer package requires careful handling and a hawk eye.
Every company is different and has different rules, but below are most of the important
things you should look for when you are testing the package.

Naming Standards

MSI name format Your company standard, for example
ProductName-ProductVersion-
Architecture-ReleaseNR.msi

MST name format Your company standard, for example
ProductName-ProductVersion-
Architecture-ReleaseNR.mst

Summary Information

ProductName Your company standard, for example
[ProductName] [Product Version]

Title Your company standard, for example
[ProductName] [Product Version] [Release
NR]

Subject Your company standard, usually empty

Author Your company standard

Comments Your company standard

Keywords Installer,MSI,Database

Properties

ALLUSERS 1

ARPNOMODIFY 0 - If 1 document why necessary

ARPNOREMOVE 0 - If 1 document why necessary

ARPNOREPAIR 0 - If 1 document why necessary

REBOOT ReallySuppress

ROOTDRIVE C:\

186Powered by AdvancedInstaller.com

ISCHECKFORPRODUCTUPDATES Remove property

MSIDISABLERMRESTART 0

MSIRMSHUTDOWN 2

MSIRESTARTMANAGERCONTROL Disable

ARPSYSTEMCOMPONENT If used, it needs to be documented.

File/Folder checks

Ensure that files installing to System32
or any common folder are Reference
Counted

Check the log file to determine if any of the
folders listed need to be shared.

No unnecessary File/Folder entries. No unnecessary entries.

Registry checks

Inspecting Registry for any unnecessary
entries. Most should be included in the
Exclusion List

No unnecessary entries.

Other checks

Shortcut placement

Start Menu\Programs\<application name>
or directly in Start Menu

Check for unnecessary shortcuts. e.g.
Product Registration / Readme / Vendor
URL.

Also, make sureno quick launch or non
standard location shortcuts exist unless
specified in the approved discovery
document.

Your company standard. In any case
(capture, MST, silent), shortcut locations
remain just as the vendor places them
(default). Only in rare cases where the
customer asks for a different Start Menu
structure this is modified

No references to network drives i.e. “H:\”. Check with a table search in your MSI
editor.

Ensure there are no unused directory table
entries

Delete any unused directories in directory
table

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

187Powered by AdvancedInstaller.com

Media table • Ensure there are no unused entries
• LastSequence value should not be larger
than the greatest Sequence value from the
File table.

If ActiveSetup is used and a new release
of a package is created (e.g. to fix an
issue), then ensure the “Version” string
value in the registry is incremented.

HKLM\SOFTWARE\Microsoft\
Active Setup\Installed Components\
[ProductCode]

Version=X,X

Note: Do not use decimal points in
versions within ActiveSetup keys as they
are ignored.

If ActiveSetup is used, check to see if it
needs removal

In most cases, at uninstall, the Active
Setup keys should be deleted (from
HKCU).

Custom Action Check Check if all the custom actions are
correctly placed and function correctly.

Installation

Ensure that these Device Drivers are
managed correctly within the package.

Install any prerequisites as documented.

Install a previous version of the application
and check if the current package upgrades
the previous package

188Powered by AdvancedInstaller.com

Log on as Administrator and install the
application under the SYSTEM context
(psexec -s) ensuring that core applications
are ran during the process, if integration is
required
(Do not run the application as an admin
user).
After installation, DELETE THE SOURCE
MEDIA (MSI,MST,ENTIRE FOLDER)
FROM WHERE THE PACKAGE HAS BEEN
INSTALLED TO CHECK IF THE PACKAGE
REQUIRES MEDIA DURING SELF-HEALING.
Use the installation command line.
Ensure pop ups / messages during
installation are consistent with the wanted
behavior.
Reboot / Log off and on if required by the
installation i.e. check for ActiveSetup.

Launch all shortcuts as the locked down
user.

Test functionality of the application as a
locked down user.
Ensure no popups / EULA / first use /
product registration dialogs.
Check auto updates disabled in the user
interface.
Ensure the functionality meets all
requirements.

Check that ODBC entries have been
created on the machine.

Check that services have been installed on
the machine.

Check services path(s) for vulnerabilities.

Confirm that environment variables have
been applied correctly.

Check installation logs to verify the
installation was successful.

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

189Powered by AdvancedInstaller.com

Check permissions are set correctly

Check Firewall rules

Check Control Panel applet(s) (if any).

Ensure there are no errors / unexpected
repairs after reboot.

Revert to a clean build. Repeat the
installation tests above after installing
and removing the previous version. (only if
previous version exists)

Repair

Simulate repair Remove a keypath and then launch the
application.
Check if the removed item has been
restored.
Check if the package size has not
ballooned which would indicate a problem
with payload dropping during repair.
Check application functionality.

MSI repair Check user based components (e.g. User
Profile files) are created during the repair
and that no unnecessary repair happens
on subsequent launches.

ActiveSetup ActiveSetup should only be used if:
a) standard MSI repair cannot be used e.g.
Unadvertised shortcut.
Or
b) it is part of the MSI design

Uninstall

190Powered by AdvancedInstaller.com

Login as Administrator and Uninstall
packages running under the SYSTEM
context (psexec -s) using the command
line. making sure that all components
that should be uninstalled are uninstalled.
Ensure that core applications are
launched if an integration is required
by the application. (Use the installation
command line from the package build
document.)
Ensure pop ups / messages during
removal are consistent with the needed
behavior.
Ensure all running processes are closed
and removed (i.e. taskbar items).

Reboot (if applicable) after uninstall. Check system state is as expected.

Ensure that all shortcuts have been
removed

Ensure the application folder is removed.

Ensure services are removed.

Ensure ODBC entries/drivers are removed
(if applicable).

Check environment variables are removed.
The path variable should be checked to
ensure that the whole path variable has
not been removed.

Registry - application specific keys
removal.

Depending on the nature of the package,
check if the application specific registry
keys have all been removed.

Installation directory removal Check that the INSTALLDIR has been
removed.
If not possible, it should be documented.

Firewall rules removal check.

Control Panel applets removal check.

Check file associations are correctly
removed or reverted (if shared).

https://www.advancedinstaller.com/
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSI-Packaging

191Powered by AdvancedInstaller.com

Review the event log errors and warnings,
ensure none exist that imply a packaging
issue exists..

Check Uninstall logs to verify Uninstall was
successful.

About the Author
With almost two decades of experience as an IT Pro engineer and manager in enterprises

under his sleeve, Alex Marin has managed a huge amount of end-users and has many stories

to share about the industry. (Follow him on Twitter to learn more)

When he is not tinkering with his own tools and scripts, Alex loves teaching the secrets of

Windows Installer either by writing a new article or through his videos, posted on the

Advanced Installer Youtube channel.

In this book, he’s sticking to the fundamentals of application packaging. Mainly, on the useful

foundations that software engineers currently developing or

managing Windows Applications can put into practice.

Alex Marin
IT Pro | Packaging Lead | Author

Follow Alex on
 YouTube Advanced Installer Blog

https://twitter.com/AlexM_Tweet
https://www.youtube.com/c/advancedinstaller
https://www.youtube.com/watch?v=woE3JkX0aU8&list=PLhybAX-2L54xgRp1Vn9UgedRsvJCzQveM
https://www.advancedinstaller.com/authors/alex-marin.html

	_GoBack

